测地曲率

✍ dations ◷ 2025-04-04 11:19:35 #曲率

测地曲率:设P是曲线(C)上一点, α {\displaystyle \alpha }
在有些书籍还会沿用旧式的 {
}符号注记。由于克式符号属曲面的内蕴性质,而上述测地曲率一般公式只和克式符号与曲面第一基本形式有关,因此,测地曲率必然是属曲面的内蕴几何量。

今若曲线 C {\displaystyle C} 是沿着 u = ( s ) {\displaystyle u=(s)} 座标线的话,此时 v = {\displaystyle v=} 常数,使得 d v / d s = 0 {\displaystyle dv/ds=0} 以及 d u / d s = 1 / g 11 {\displaystyle du/ds=1/{\sqrt {g_{11}}}} ,那么其测地曲率可算得为:

( k g ) u l i n e = Γ 11 2 E G F 2 E E = Γ 11 2 ( g 1 / 2 g 11 3 / 2 ) {\displaystyle (k_{g})_{u-line}=\Gamma _{11}^{2}{\dfrac {\sqrt {EG-F^{2}}}{E{\sqrt {E}}}}=\Gamma _{11}^{2}\left({\dfrac {g^{1/2}}{g_{11}^{3/2}}}\right)}

同理,假如曲线 C {\displaystyle C} 是沿着 v = ( s ) {\displaystyle v=(s)} 座标线的话,使得 u = {\displaystyle u=} 常数,因此 d u / d s = 0 {\displaystyle du/ds=0} 以及 d v / d s = 1 / g 22 {\displaystyle dv/ds=1/{\sqrt {g_{22}}}} ,那么其测地曲率可化简为:

( k g ) v l i n e = Γ 22 1 E G F 2 G G = Γ 22 1 ( g 1 / 2 g 22 3 / 2 ) {\displaystyle (k_{g})_{v-line}=-\Gamma _{22}^{1}{\dfrac {\sqrt {EG-F^{2}}}{G{\sqrt {G}}}}=-\Gamma _{22}^{1}\left({\dfrac {g^{1/2}}{g_{22}^{3/2}}}\right)}

C {\displaystyle C} 为曲面S上的一正则曲线,在此曲线上以其弧长 s {\displaystyle s} 为参数,则曲线 C {\displaystyle C} 的参数方程式为 C : r ( s ) = ( u ( s ) , v ( s ) ) {\displaystyle C:r(s)=(u(s),v(s))} ,今其参数化是采正交座标系,换言之,第一基本形式的系数 F = 0 {\displaystyle F=0} ,又令曲线 C {\displaystyle C} 在P点与 u {\displaystyle u} 座标线的夹角为 θ {\displaystyle \theta } ,则它在P点的测地曲率 k g {\displaystyle k_{g}} 可表为下列与 θ ( s ) {\displaystyle \theta (s)} 夹角相关的Liouville公式:

k g = d θ ( s ) d s 1 2 G ln E v cos θ + 1 2 E ln G u sin θ = d θ ( s ) d s + ( k g ) u l i n e cos θ + ( k g ) v l i n e sin θ = d θ ( s ) d s + ( k g ) u l i n e E d u d s + ( k g ) v l i n e G d v d s {\displaystyle {\begin{aligned}k_{g}&={\dfrac {d\theta (s)}{ds}}-{\dfrac {1}{2{\sqrt {G}}}}{\dfrac {\partial \ln E}{\partial v}}\cos \theta +{\dfrac {1}{2{\sqrt {E}}}}{\dfrac {\partial \ln G}{\partial u}}\sin \theta \\&={\dfrac {d\theta (s)}{ds}}+(k_{g})_{u-line}\cos \theta +(k_{g})_{v-line}\sin \theta \\&={\dfrac {d\theta (s)}{ds}}+(k_{g})_{u-line}{\sqrt {E}}{\dfrac {du}{ds}}+(k_{g})_{v-line}{\sqrt {G}}{\dfrac {dv}{ds}}\end{aligned}}}


上述公式中的 ( k g ) u l i n e {\displaystyle (k_{g})_{u-line}} ( k g ) v l i n e {\displaystyle (k_{g})_{v-line}} 乃分属于两个座标线对应的测地曲率,至于它们的具体表征是什么,接下来将分别推导出其详细内容。首先,考量如若曲线 C {\displaystyle C} 是沿着 u = ( s ) {\displaystyle u=(s)} 座标线的话,此时 v = {\displaystyle v=} 常数,则有 d v / d s = 0 {\displaystyle dv/ds=0} 以及 d u / d s = 1 / E {\displaystyle du/ds=1/{\sqrt {E}}} ,那么该测地曲率可算得为:

( k g ) u l i n e = E v 2 E G {\displaystyle (k_{g})_{u-line}=-{\dfrac {E_{v}}{2E{\sqrt {G}}}}}

同理,假如曲线 C {\displaystyle C} 是沿着 v = ( s ) {\displaystyle v=(s)} 座标线的话,此时 u = {\displaystyle u=} 常数,导致 d u / d s = 0 {\displaystyle du/ds=0} 以及 d v / d s = 1 / G {\displaystyle dv/ds=1/{\sqrt {G}}} ,那么此测地曲率可算得为:

( k g ) v l i n e = G u 2 G E {\displaystyle (k_{g})_{v-line}={\dfrac {G_{u}}{2G{\sqrt {E}}}}}

以上测地曲率之Liouville公式就已列出有三种,若觉得怎么会有这么多样形式,其实还有其他变形,例如可参考网络上更加精简且优美的形式,这端赖解析问题时,需要配套什么形式的公式而定。


相关

  • 孕产次数孕产次数(gravidity and parity)是生物学及医学中有关妊娠的数字,孕产次数包括孕次(gravidity)及产次(parity),孕次是指怀孕次数,产次则是胎儿到可存活胎龄(viable gestational age)的
  • 电气熔渣焊电渣焊是指利用电流通过液体熔渣所产生的电阻热进行焊接的一种方法。电渣焊非常适合用于在垂直位置(立焊)或接近垂直位置焊接各种大厚度(25~300毫米)工件,其生产率高,其热效率高达8
  • 爱上巧克力《爱上巧克力》(意大利语:Ti Amo Chocolate),2012年三立华人电视剧八点档系列的第二部作品,由台湾移动制作股份有限公司制作。由吴建豪、曾之乔、王子、张勋杰、窦智孔、郭书瑶、
  • 三都水族自治县三都水族自治县是中华人民共和国贵州省黔南布依族苗族自治州下属的一个自治县。面积2384平方公里,2012年人口32万。邮政编码558100,县政府驻三合街道。是全国唯一的水族自治县
  • 四阶八边形镶嵌在几何学中,四阶八边形镶嵌是由八边形组成的双曲面正镶嵌图,在施莱夫利符号中用{8,4}表示。四阶八边形镶嵌每个顶点皆由四个八边形共用,且八边形不重叠,这样一来,该点处的内角和
  • 亚历山德拉王后丹麦的亚历山德拉(英语:Alexandra of Denmark;1844年12月1日-1925年11月25日),全名亚历山德拉·卡洛琳·玛丽·夏洛特·路易丝·茱莉亚(英语:Alexandra Caroline Marie Charlotte Lo
  • 阿尔布雷希特·杜勒之家阿尔布雷希特·杜勒之家(德语:Albrecht-Dürer-Haus)是位于德国城市纽伦堡的一座建筑,也是德国文艺复兴时期艺术家阿尔布雷希特·杜勒在1509年至1528年期间的家。自1871年以来,这
  • 仙女座Y仙女座Y是在仙女座的一颗变星,它被归类为米拉变星,视星等的变化范围从最暗的15.1等到最亮的8.2等,周期为220.5天。
  • 朗·普尔曼伦纳德·N·“朗”·普尔曼(英语:Ronald N. " Ron " Perlman,1950年4月13日-)或简称朗·普尔曼(英语:Ron Perlman),是一名美国男演员。普尔曼出生于纽约州的一个犹太人家庭。 他的母
  • 弗朗西斯科 (加的斯公爵)弗朗西斯科·德·阿西西·玛利亚·费尔南多·德·波旁·波旁-两西西里,(Francisco de Asís María Fernando de Borbón y Borbón-Dos Sicilias,1822年5月13日-1902年4月17日)