调和数

✍ dations ◷ 2025-11-30 05:36:57 #数论

调和数可以指跟约数和有关的整数欧尔调和数。在数学上,第n个调和数是首n个正整数的倒数和,即

H n = 1 + 1 2 + 1 3 + + 1 n = k = 1 n 1 k {\displaystyle H_{n}=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}=\sum _{k=1}^{n}{\frac {1}{k}}}

它也等于这些自然数的调和平均值的倒数的 n {\displaystyle n} 倍。它可以推广到正整数的倒数的幂之和,即 H n ( m ) = k = 1 n 1 k m {\displaystyle H_{n}^{(m)}=\sum _{k=1}^{n}{\frac {1}{k^{m}}}}

根据定义,调和数满足递推关系

H n + 1 = H n + 1 n + 1 {\displaystyle H_{n+1}=H_{n}+{\frac {1}{n+1}}}

它也满足恒等式

k = 1 n H k = ( n + 1 ) H n n {\displaystyle \sum _{k=1}^{n}H_{k}=(n+1)H_{n}-n}

对于第n项调和数,有以下公式

H n = 0 1 1 x n 1 x d x . {\displaystyle H_{n}=\int _{0}^{1}{\frac {1-x^{n}}{1-x}}\,dx.}

设: x = 1 u {\displaystyle x=1-u\,\!} ,由此得到


对于调和数 H n {\displaystyle H_{n}} ,当n不是太大时,可以直接计算。

当n特别大时,可以进行估算。

因为 lim n ( k = 1 n 1 k ln n ) = γ {\displaystyle \lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\ln n\right)=\gamma }

其中 γ 0.5772156649 {\displaystyle \gamma \approx 0.5772156649} 称为欧拉-马斯刻若尼常数,

由此得到

H n ln n + γ {\displaystyle H_{n}\sim \ln {n}+\gamma }

当n越大时,估算越精确。

更精确的估算是

H n ln n + γ + 1 2 n k = 1 B 2 k 2 k n 2 k = ln n + γ + 1 2 n 1 12 n 2 + 1 120 n 4 , {\displaystyle H_{n}\sim \ln {n}+\gamma +{\frac {1}{2n}}-\sum _{k=1}^{\infty }{\frac {B_{2k}}{2kn^{2k}}}=\ln {n}+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\cdots ,}

其中 B k {\displaystyle B_{k}} 是第k项伯努利数。


广义调和数满足

H α = 0 1 1 x α 1 x d x . {\displaystyle H_{\alpha }=\int _{0}^{1}{\frac {1-x^{\alpha }}{1-x}}\,dx\,.}

由此,我们得到

对于任意两个正整数p和q,并且p<q,我们有

对于每一个大于0的x,有

H x = x k = 1 1 k ( x + k ) . {\displaystyle H_{x}=x\sum _{k=1}^{\infty }{\frac {1}{k(x+k)}}\,.}

由此,得

0 1 H x d x = γ , {\displaystyle \int _{0}^{1}H_{x}\,dx=\gamma \,,}

对于每一个n,有

0 n H x d x = ln ( n ! ) + n γ . {\displaystyle \int _{0}^{n}H_{x}\,dx=\ln {(n!)}+n\gamma \,.}

根据定义,其他类似于调和数的数列有以下计算方法:

k = 1 n 1 k = ψ ( n 1 ) + γ {\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}=\psi (n-1)+\gamma }

k = 0 n 1 2 k + 1 = 1 2 + ln 2 {\displaystyle \sum _{k=0}^{n}{\frac {1}{2k+1}}={\frac {1}{2}}\left+\ln {2}}

k = 1 n 1 2 k = H n 2 {\displaystyle \sum _{k=1}^{n}{\frac {1}{2k}}={\frac {H_{n}}{2}}}

相关

  • 宫以腾宫以腾(1993年7月6日-),台湾男演员。2017年1月17日凌晨拍完戏后,和剧组人员聚会,喝了一小杯酒,在内湖碰到临检,酒测值高达0.5。
  • 恐惧恐惧(英语:fear)是指人或动物面对现实的或想像中的危险、自己厌恶的事物等产生的处于惊慌与紧急的状态,伴随恐惧而来的是心率改变、血压升高、盗汗、颤抖等生理上的应急反应,有时
  • ɑ开后不圆唇元音是母音的一种,用于一些语言当中,国际音标以⟨ɑ⟩代表此音,而X-SAMPA音标则以⟨A⟩代表此音。⟨ɑ⟩这符号又称作“手写体a”,因为它缺乏“印刷体a”(就是⟨a⟩)顶
  • 超球体在高维几何中,超球面(英语:Hypersphere)是指高维空间中,和一定点(称为中心)距离(称为半径)为定值的点组成的集合。超球面是余维数为1的流形,其维数比其空间维数少一。超球面的半径越大
  • 马可仕费迪南德·埃曼努埃尔·埃德拉林·马科斯(他加禄语:Ferdinand Emmanuel Edralin Marcos,1917年9月11日-1989年9月28日),菲律宾政治人物、独裁者,1965年至1986年统治菲律宾长达20年
  • 伦塞列郡伦斯勒县(Rensselaer County, New York)是美国纽约州东南部的一个县,西傍哈得逊河,东邻佛蒙特州和马萨诸塞州。面积1,723平方公里。根据美国2000年人口普查,共有人口152,538。县
  • 丁度丁度(990年-1053年),字公雅。北宋开封人。先世是恩州清河人。生于淳化元年(990年),性朴实,不重仪表。大中祥符年间,“登服勤词学科”,授大理寺评事,历官通判通州,监齐州税,太子中允,改直集
  • 亨利·弗雷德里克·贝克亨利·弗雷德里克·贝克(英语:Henry Frederick Baker,1866年7月3日-1956年3月17日),英国数学家,主要工作范畴是代数几何,但也在其他领域中有杰出贡献,包括偏微分方程和李群。他生于英
  • HOMO/LUMOHOMO和LUMO分别指最高占据分子轨道(Highest Occupied Molecular Orbital)和最低未占分子轨道(Lowest Unoccupied Molecular Orbital)。根据前线轨道理论,两者统称前线轨道。HOMO
  • 2013年5月中国大陆人民网