模算数

✍ dations ◷ 2025-08-21 20:10:18 #同余,环论,群论

模算数(modular arithmetic)是一个整数的算术系统,其中数字超过一定值后(称为模)后会“卷回”到较小的数值,模算数最早是出现在卡尔·弗里德里希·高斯在1801年出版的《算术研究》一书中。

模算数常见的应用是在十二小时制,将一天分为二个以十二小时计算的单位。假设现在七点,八小时后会是三点。用一般的算术加法,会得到7 + 8 = 15,但在十二小时制中,超过十二小时会归零,不存在“十五点”。类似的情形,若时钟目前是十二时,二十一小时后会是九点,而不是三十三点。小时数超过十二后会再回到一,为模12的模算数系统。依照上述的定义,12和12本身同余,也和0同余,因此12:00的时间也可以称为是0:00,因为模12时,12和0同余。

模算数可以在导入整数的同余关系后,以数学的方式处理,同余关系和整数的加法、减法及乘法相容。针对正整数,二个整数对于模同余


若二数的差值 − 为的整数倍数(若整除 − )。数字称为同余关系的模。

例如

因为38 − 14 = 24,是12的倍数。

上述的概念也对负数有效:

≡ mod 也可以用计算带余除法的余数时,除以的余数相同来表示。例如

因为38和14除以12时,余数都为2。这是因为38 − 14 = 24是12的整数倍,符合之前同余关系的定义。

因为常常会考虑不同模数的同余关系,因此表示同余关系时会用 ≡ mod 的表示法。除去三元的表示法不论,同余关系其实是二元关系,用 就可以看出此一特性。

同余关系可以和加法、减法及乘法一起使用时。若

若模算数延伸到包括所有实数,上式也成立,也就是说1, 2, 1, 2, 不一定都是整数,不过以下的关系在不都是整数时可能会不成立:

模算数在数论、群论、环论、纽结理论、抽象代数、电脑代数(英语:computer algebra)、密码学、计算机科学及化学中都有使用,也出现在视觉艺术及音乐。

模算数是数论的基础之一,也提供了群论、环论及抽象代数中一些重要的范例。

模算数也常作为识别码的校验码。例如国际银行账户号码(IBAN)就用模97的余数来避免输入编号时的错误。

在密码学中,模算数是 RSA及迪菲-赫尔曼等公开密钥加密系统的基础,也提到了和 椭圆曲线有关的有限域,用在许多的系统化钥算法(英语:symmetric key algorithm)中,包括高级加密标准(AES)、国际资料加密算法(IDEA)、及RC4。RSA和迪菲-赫尔曼密钥交换用到了模幂(英语:modular exponentiation)。

在电脑代数中,模算数常用来限制中间计算的整数系数大小,也限制计算中用到的资料。模算数用在多项式分解(英语:polynomial factorization)中(其中所有已知有效率的算法都用到了模算数),而针对整数及有理数的多项式最大公因式(英语:polynomial greatest common divisor)、线性代数及Gröbner基(英语:Gröbner basis),最有效率解法都用到了模算数。

计算机科学中,模算数会以位操作的方式表示,也和其他定长度、循环式的数据结构有关。许多编程语言及计算器中都有模除,而XOR是二个位元在模2下的和。

化学中,表示化合物编号的CAS号,最后一码是校验码,是将CAS号前二位数乘以1、下一位乘以2,再下一位乘以3……,最后对10取余数而得。

音乐上,模12的模算数用在十二平均律的系统中,其中有纯八度及异名同音的情形(,例如升音符的C音和降音符的D音会视为是同一个音)。

去九法是徒手计算时快速的检查工具,是以模9的模算数为基础,而且其中最重要的性质是 10 ≡ 1 (mod 9)。

模7的模算数在许多计算特定日期是星期几的算法中出现,特别是蔡勒公式及判决日法则(英语:doomsday algorithm)中。

模算数也用在像法律(像分配数(英语:Apportionment (politics)))、经济学(像博弈论),若一些社会科学的分析会强调资源的比例分割(英语:Proportional (fair division))及分配,也会用到模算数。

相关

  • 5f14 6d10 7s22, 8, 18, 32, 32, 18, 2第一:1154.9 kJ·mol−1 第二:2170.0 kJ·mol−1 第三:3164.7 kJ·mol−1 (六方密排主条目:[[鎶的同位素]]'鎶'(Copernicium)是一种人工合成
  • 印戒细胞癌印戒细胞癌(Signet ring cell carcinoma,SRCC),又称黏液细胞癌(mucinous cell carcinoma,MCC)是上皮组织的恶性肿瘤,组织学外观特点是可以见到印戒细胞。它是腺癌的一种表现形式,最常
  • 自由落体自由落体运动是指只受重力作用(不存在空气阻力的理想状态)的均匀加速度运动过程。 运动过程中重力势能与动能之和遵守机械能守恒定律。在地球上相同位置与相同高度,自由落体的
  • 三硫化二钐三硫化二钐是一种无机化合物,化学式为Sm2S3。三硫化二钐可以和强酸反应,放出硫化氢,如:
  • 朗塞斯顿坐标:41°26′S 147°8′E / 41.433°S 147.133°E / -41.433; 147.133朗塞斯頓(英语:Launceston)位于澳大利亚塔斯马尼亚岛北部,是塔斯马尼亚州第二大城市,2015年6月估计人口86,6
  • 约·约翰逊约·约翰逊(Jo Johnson,1971年12月23日-)是一位英国保守党籍政治人物。自2010年5月开始,他担任奥平顿选区的下议院议员。他曾担任教育部专辖大学与科技副大臣、英国运输副大臣等
  • 柄球藻目柄球藻目(Mischococcales)为藻类植物之一植物目。该植物于植物分类表上,归于黄藻门(Xanthophyta) (Chromophyta)黄藻纲 (Xanthophyceae) ,同纲者尚有异鞭藻目(Heterochloridales)等
  • .rs.rs为塞尔维亚国家及地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az  B .ba .bb .bd .be .bf .bg .bh .bi .bj .bm .
  • 广东以色列理工学院广东以色列理工学院(英语:Guangdong Technion-Israel Institute of Technology),简称广以(GTIIT),是中华人民共和国第一所引进以色列优质高等教育资源的具有独立法人资格的中外合作
  • 克拉利岛克拉利岛(俄语:Остров Кроличий)是俄罗斯的岛屿,由滨海边疆区负责管辖,位于哈桑斯基县东部,面积0,034km²,最高点海拔高度24,5米,岛上无人居住。