常微分方程

✍ dations ◷ 2025-11-07 18:42:47 #常微分方程
在数学分析中,常微分方程(英语:ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s {displaystyle s} 和时间 t {displaystyle t} 的关系就可以表示为如下常微分方程:其中 m {displaystyle m} 是物体的质量, f ( s ) {displaystyle f(s)} 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s {displaystyle s} ,它只以时间 t {displaystyle t} 为自变量。一些微分方程有精确封闭形式的解,这里给出几个重要的类型。在下表中, P ( x ) , Q ( x ) ; P ( y ) , Q ( y ) {displaystyle P(x),Q(x);P(y),Q(y)} 和 M ( x , y ) , N ( x , y ) {displaystyle M(x,y),N(x,y)} 是任意关于 x , y {displaystyle x,y} 的可积(英语:Integrable)函数, b , c {displaystyle b,c} 是给定的实常数, C , C 1 , C 2 … {displaystyle C,C_{1},C_{2}ldots } 是任意常数(一般为复数)。这些微分方程的等价或替代形式通过积分可以得到解。在积分解中, λ {displaystyle lambda } 和 ϵ {displaystyle epsilon } 是积分变量(求和下标的连续形式),记号 ∫ x F ( λ ) d λ {displaystyle int ^{x}F(lambda )dlambda } 只表示 F ( λ ) {displaystyle F(lambda )} 对 λ {displaystyle lambda } 积分,在积分以后 λ = x {displaystyle lambda {}=x} 替换,无需加常数(明确说明)。P 1 ( x ) Q 1 ( y ) + P 2 ( x ) Q 2 ( y ) d y d x = 0 {displaystyle P_{1}(x)Q_{1}(y)+P_{2}(x)Q_{2}(y),{frac {dy}{dx}}=0,!}P 1 ( x ) Q 1 ( y ) d x + P 2 ( x ) Q 2 ( y ) d y = 0 {displaystyle P_{1}(x)Q_{1}(y),dx+P_{2}(x)Q_{2}(y),dy=0,!}d y d x = F ( x ) {displaystyle {frac {dy}{dx}}=F(x),!}d y = F ( x ) d x {displaystyle dy=F(x),dx,!}d y d x = F ( y ) {displaystyle {frac {dy}{dx}}=F(y),!}d y = F ( y ) d x {displaystyle dy=F(y),dx,!}P ( y ) d y d x + Q ( x ) = 0 {displaystyle P(y){frac {dy}{dx}}+Q(x)=0,!}P ( y ) d y + Q ( x ) d x = 0 {displaystyle P(y),dy+Q(x),dx=0,!}d y d x = F ( y x ) {displaystyle {frac {dy}{dx}}=Fleft({frac {y}{x}}right),!}y M ( x y ) + x N ( x y ) d y d x = 0 {displaystyle yM(xy)+xN(xy),{frac {dy}{dx}}=0,!}y M ( x y ) d x + x N ( x y ) d y = 0 {displaystyle yM(xy),dx+xN(xy),dy=0,!}ln ⁡ ( C x ) = ∫ x y N ( λ ) d λ λ [ N ( λ ) − M ( λ ) ] {displaystyle ln(Cx)=int ^{xy}{frac {N(lambda ),dlambda }{lambda }},!}如果 N = M {displaystyle N=M} , 解为 x y = C {displaystyle xy=C} .M ( x , y ) d y d x + N ( x , y ) = 0 {displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M ( x , y ) d y + N ( x , y ) d x = 0 {displaystyle M(x,y),dy+N(x,y),dx=0,!}其中 ∂ M ∂ x = ∂ N ∂ y {displaystyle {frac {partial M}{partial x}}={frac {partial N}{partial y}},!}其中 Y ( y ) {displaystyle Y(y)} 和 X ( x ) {displaystyle X(x)} 是积分出来的函数而不是常数,将它们列在这里以使最终函数 F ( x , y ) {displaystyle F(x,y)} 满足初始条件。M ( x , y ) d y d x + N ( x , y ) = 0 {displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M ( x , y ) d y + N ( x , y ) d x = 0 {displaystyle M(x,y),dy+N(x,y),dx=0,!}其中 ∂ M ∂ x ≠ ∂ N ∂ y {displaystyle {frac {partial M}{partial x}}neq {frac {partial N}{partial y}},!}∂ ( μ M ) ∂ x = ∂ ( μ N ) ∂ y {displaystyle {frac {partial (mu M)}{partial x}}={frac {partial (mu N)}{partial y}},!}F ( x , y ) = ∫ y μ ( x , λ ) M ( x , λ ) d λ + ∫ x μ ( λ , y ) N ( λ , y ) d λ + Y ( y ) + X ( x ) = C {displaystyle {begin{aligned}F(x,y)&=int ^{y}mu (x,lambda )M(x,lambda ),dlambda +int ^{x}mu (lambda ,y)N(lambda ,y),dlambda \&+Y(y)+X(x)=C\end{aligned}},!}d 2 y d x 2 = F ( y ) {displaystyle {frac {d^{2}y}{dx^{2}}}=F(y),!}d y d x + P ( x ) y = Q ( x ) {displaystyle {frac {dy}{dx}}+P(x)y=Q(x),!}d 2 y d x 2 + b d y d x + c y = r ( x ) {displaystyle {frac {d^{2}y}{dx^{2}}}+b{frac {dy}{dx}}+cy=r(x),!}特解 y p {displaystyle y_{p}} :一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的 r ( x ) {displaystyle r(x)} 可以直观判断。如果 b 2 > 4 c {displaystyle b^{2}>4c} , 则:y c = C 1 e ( − b + b 2 − 4 c ) x 2 + C 2 e − ( b + b 2 − 4 c ) x 2 {displaystyle y_{c}=C_{1}e^{left(-b+{sqrt {b^{2}-4c}}right){frac {x}{2}}}+C_{2}e^{-left(b+{sqrt {b^{2}-4c}}right){frac {x}{2}}},!}如果 b 2 = 4 c {displaystyle b^{2}=4c} , 则:y c = ( C 1 x + C 2 ) e − b x 2 {displaystyle y_{c}=(C_{1}x+C_{2})e^{-{frac {bx}{2}}},!}如果 b 2 < 4 c {displaystyle b^{2}<4c} , 则:y c = e − b x 2 [ C 1 sin ⁡ ( | b 2 − 4 c | x 2 ) + C 2 cos ⁡ ( | b 2 − 4 c | x 2 ) ] {displaystyle y_{c}=e^{-{frac {bx}{2}}}left,!}∑ j = 0 n b j d j y d x j = r ( x ) {displaystyle sum _{j=0}^{n}b_{j}{frac {d^{j}y}{dx^{j}}}=r(x),!}特解 y p {displaystyle y_{p}} :一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的 r ( x ) {displaystyle r(x)} 可以直观判断。由于 α j {displaystyle alpha _{j}} 为 n {displaystyle n} 阶多项式的解: ∏ j = 1 n ( α − α j ) = 0 {displaystyle prod _{j=1}^{n}left(alpha -alpha _{j}right)=0,!} ,于是:对于各不相同的 α j {displaystyle alpha _{j}} ,y c = ∑ j = 1 n C j e α j x {displaystyle y_{c}=sum _{j=1}^{n}C_{j}e^{alpha _{j}x},!}每个根 α j {displaystyle alpha _{j}} 重复 k j {displaystyle k_{j}} 次,y c = ∑ j = 1 n ( ∑ ℓ = 1 k j C ℓ x ℓ − 1 ) e α j x {displaystyle y_{c}=sum _{j=1}^{n}left(sum _{ell =1}^{k_{j}}C_{ell }x^{ell -1}right)e^{alpha _{j}x},!}对于一些复数值的 αj,令 α = χj + iγj,使用欧拉公式,前面结果中的一些项就可以写成的形式,其中 ϕj 为任意常量(相移)。

相关

  • Ibuprofen布洛芬(英语:Ibuprofen,商品名:芬必得、普罗芬),是一种非类固醇消炎药(NSAID),用来止痛,退烧和消炎。可用于治疗经痛、偏头痛,和类风湿性关节炎。大约60%的人在使用任意一种NSAID后症状
  • 前房积血前房积血(hyphema)指眼睛的角膜前房因积血而导致眼角膜泛红,眼角膜也可能肿胀。通常因受到撞击而导致眼角膜前房积血。前房积血可能导致暂时性失明。需要医药治疗否则可能导致
  • CD4+1CDH, 1CDI, 1CDJ, 1CDU, 1CDY, 1G9M, 1G9N, 1GC1, 1JL4, 1Q68, 1RZJ, 1RZK, 1WBR, 1WIO, 1WIP, 1WIQ, 2B4C, 2JKR, 2JKT, 2KLU, 2NXY, 2NXZ, 2NY0, 2NY1, 2NY2, 2NY3, 2NY4
  • 风能风能主要应用为风力发电,系利用风提供能量,以带动风力发动机运转;另可用于非电力应用,例如帆船、风车等。在电力应用普及以前,人们就懂得利用风能,例如在公元前人们就已经用帆船横
  • 工业发酵发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种技术。发酵工程的内容包括菌种选育、培养基的配置
  • 目的论目的论(英语:Teleology)属于哲学的范畴,致力于探讨事物产生的目的、本源和其归宿。传统上目的论与哲学自然论(或偶然论)是对立的。例如,自然论者会认为人有眼睛所以人有视力,即所谓
  • 日耳曼语族日耳曼语族是印欧语系的一支,是居住在北部欧洲日耳曼民族的语族。这一族语言有鲜明的特征,最著名的有关于辅音演变的格里姆定律。一些早期(约公元2世纪)的日耳曼语言发展出自己
  • 公园公园是供公众消遣游憩的场所。公园可以指下列场所:早期的公园出现于波斯国的苑囿,原目的为供骑射的驰道和遮蔽风雨的处所,美化后成为公园。公园在古希腊时期,是露天集会场地,希腊
  • 医学伦理医学伦理学(英语:medical ethics)是在人类以预防、医疗卫生行为、医学研究以及卫生事业管理等有关的道德现象的基础上,确立伦理学依据及其概念体系,概括出基本的伦理原则或准则、
  • 活检活体组织切片(biopsy),从动物或人类身上取下少量活组织作病理学诊断的一种检查方法。活检对肿瘤的临床诊断有重要意义,不仅可以确定其组织分类,还可确定其良性或恶性,为治疗提供依