首页 >
常微分方程
✍ dations ◷ 2025-11-07 18:42:47 #常微分方程
在数学分析中,常微分方程(英语:ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移
s
{displaystyle s}
和时间
t
{displaystyle t}
的关系就可以表示为如下常微分方程:其中
m
{displaystyle m}
是物体的质量,
f
(
s
)
{displaystyle f(s)}
是物体所受的力,是位移的函数。所要求解的未知函数是位移
s
{displaystyle s}
,它只以时间
t
{displaystyle t}
为自变量。一些微分方程有精确封闭形式的解,这里给出几个重要的类型。在下表中,
P
(
x
)
,
Q
(
x
)
;
P
(
y
)
,
Q
(
y
)
{displaystyle P(x),Q(x);P(y),Q(y)}
和
M
(
x
,
y
)
,
N
(
x
,
y
)
{displaystyle M(x,y),N(x,y)}
是任意关于
x
,
y
{displaystyle x,y}
的可积(英语:Integrable)函数,
b
,
c
{displaystyle b,c}
是给定的实常数,
C
,
C
1
,
C
2
…
{displaystyle C,C_{1},C_{2}ldots }
是任意常数(一般为复数)。这些微分方程的等价或替代形式通过积分可以得到解。在积分解中,
λ
{displaystyle lambda }
和
ϵ
{displaystyle epsilon }
是积分变量(求和下标的连续形式),记号
∫
x
F
(
λ
)
d
λ
{displaystyle int ^{x}F(lambda )dlambda }
只表示
F
(
λ
)
{displaystyle F(lambda )}
对
λ
{displaystyle lambda }
积分,在积分以后
λ
=
x
{displaystyle lambda {}=x}
替换,无需加常数(明确说明)。P
1
(
x
)
Q
1
(
y
)
+
P
2
(
x
)
Q
2
(
y
)
d
y
d
x
=
0
{displaystyle P_{1}(x)Q_{1}(y)+P_{2}(x)Q_{2}(y),{frac {dy}{dx}}=0,!}P
1
(
x
)
Q
1
(
y
)
d
x
+
P
2
(
x
)
Q
2
(
y
)
d
y
=
0
{displaystyle P_{1}(x)Q_{1}(y),dx+P_{2}(x)Q_{2}(y),dy=0,!}d
y
d
x
=
F
(
x
)
{displaystyle {frac {dy}{dx}}=F(x),!}d
y
=
F
(
x
)
d
x
{displaystyle dy=F(x),dx,!}d
y
d
x
=
F
(
y
)
{displaystyle {frac {dy}{dx}}=F(y),!}d
y
=
F
(
y
)
d
x
{displaystyle dy=F(y),dx,!}P
(
y
)
d
y
d
x
+
Q
(
x
)
=
0
{displaystyle P(y){frac {dy}{dx}}+Q(x)=0,!}P
(
y
)
d
y
+
Q
(
x
)
d
x
=
0
{displaystyle P(y),dy+Q(x),dx=0,!}d
y
d
x
=
F
(
y
x
)
{displaystyle {frac {dy}{dx}}=Fleft({frac {y}{x}}right),!}y
M
(
x
y
)
+
x
N
(
x
y
)
d
y
d
x
=
0
{displaystyle yM(xy)+xN(xy),{frac {dy}{dx}}=0,!}y
M
(
x
y
)
d
x
+
x
N
(
x
y
)
d
y
=
0
{displaystyle yM(xy),dx+xN(xy),dy=0,!}ln
(
C
x
)
=
∫
x
y
N
(
λ
)
d
λ
λ
[
N
(
λ
)
−
M
(
λ
)
]
{displaystyle ln(Cx)=int ^{xy}{frac {N(lambda ),dlambda }{lambda }},!}如果
N
=
M
{displaystyle N=M}
, 解为
x
y
=
C
{displaystyle xy=C}
.M
(
x
,
y
)
d
y
d
x
+
N
(
x
,
y
)
=
0
{displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M
(
x
,
y
)
d
y
+
N
(
x
,
y
)
d
x
=
0
{displaystyle M(x,y),dy+N(x,y),dx=0,!}其中
∂
M
∂
x
=
∂
N
∂
y
{displaystyle {frac {partial M}{partial x}}={frac {partial N}{partial y}},!}其中
Y
(
y
)
{displaystyle Y(y)}
和
X
(
x
)
{displaystyle X(x)}
是积分出来的函数而不是常数,将它们列在这里以使最终函数
F
(
x
,
y
)
{displaystyle F(x,y)}
满足初始条件。M
(
x
,
y
)
d
y
d
x
+
N
(
x
,
y
)
=
0
{displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M
(
x
,
y
)
d
y
+
N
(
x
,
y
)
d
x
=
0
{displaystyle M(x,y),dy+N(x,y),dx=0,!}其中
∂
M
∂
x
≠
∂
N
∂
y
{displaystyle {frac {partial M}{partial x}}neq {frac {partial N}{partial y}},!}∂
(
μ
M
)
∂
x
=
∂
(
μ
N
)
∂
y
{displaystyle {frac {partial (mu M)}{partial x}}={frac {partial (mu N)}{partial y}},!}F
(
x
,
y
)
=
∫
y
μ
(
x
,
λ
)
M
(
x
,
λ
)
d
λ
+
∫
x
μ
(
λ
,
y
)
N
(
λ
,
y
)
d
λ
+
Y
(
y
)
+
X
(
x
)
=
C
{displaystyle {begin{aligned}F(x,y)&=int ^{y}mu (x,lambda )M(x,lambda ),dlambda +int ^{x}mu (lambda ,y)N(lambda ,y),dlambda \&+Y(y)+X(x)=C\end{aligned}},!}d
2
y
d
x
2
=
F
(
y
)
{displaystyle {frac {d^{2}y}{dx^{2}}}=F(y),!}d
y
d
x
+
P
(
x
)
y
=
Q
(
x
)
{displaystyle {frac {dy}{dx}}+P(x)y=Q(x),!}d
2
y
d
x
2
+
b
d
y
d
x
+
c
y
=
r
(
x
)
{displaystyle {frac {d^{2}y}{dx^{2}}}+b{frac {dy}{dx}}+cy=r(x),!}特解
y
p
{displaystyle y_{p}}
:一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的
r
(
x
)
{displaystyle r(x)}
可以直观判断。如果
b
2
>
4
c
{displaystyle b^{2}>4c}
, 则:y
c
=
C
1
e
(
−
b
+
b
2
−
4
c
)
x
2
+
C
2
e
−
(
b
+
b
2
−
4
c
)
x
2
{displaystyle y_{c}=C_{1}e^{left(-b+{sqrt {b^{2}-4c}}right){frac {x}{2}}}+C_{2}e^{-left(b+{sqrt {b^{2}-4c}}right){frac {x}{2}}},!}如果
b
2
=
4
c
{displaystyle b^{2}=4c}
, 则:y
c
=
(
C
1
x
+
C
2
)
e
−
b
x
2
{displaystyle y_{c}=(C_{1}x+C_{2})e^{-{frac {bx}{2}}},!}如果
b
2
<
4
c
{displaystyle b^{2}<4c}
, 则:y
c
=
e
−
b
x
2
[
C
1
sin
(
|
b
2
−
4
c
|
x
2
)
+
C
2
cos
(
|
b
2
−
4
c
|
x
2
)
]
{displaystyle y_{c}=e^{-{frac {bx}{2}}}left,!}∑
j
=
0
n
b
j
d
j
y
d
x
j
=
r
(
x
)
{displaystyle sum _{j=0}^{n}b_{j}{frac {d^{j}y}{dx^{j}}}=r(x),!}特解
y
p
{displaystyle y_{p}}
:一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的
r
(
x
)
{displaystyle r(x)}
可以直观判断。由于
α
j
{displaystyle alpha _{j}}
为
n
{displaystyle n}
阶多项式的解:
∏
j
=
1
n
(
α
−
α
j
)
=
0
{displaystyle prod _{j=1}^{n}left(alpha -alpha _{j}right)=0,!}
,于是:对于各不相同的
α
j
{displaystyle alpha _{j}}
,y
c
=
∑
j
=
1
n
C
j
e
α
j
x
{displaystyle y_{c}=sum _{j=1}^{n}C_{j}e^{alpha _{j}x},!}每个根
α
j
{displaystyle alpha _{j}}
重复
k
j
{displaystyle k_{j}}
次,y
c
=
∑
j
=
1
n
(
∑
ℓ
=
1
k
j
C
ℓ
x
ℓ
−
1
)
e
α
j
x
{displaystyle y_{c}=sum _{j=1}^{n}left(sum _{ell =1}^{k_{j}}C_{ell }x^{ell -1}right)e^{alpha _{j}x},!}对于一些复数值的 αj,令 α = χj + iγj,使用欧拉公式,前面结果中的一些项就可以写成的形式,其中 ϕj 为任意常量(相移)。
相关
- Ibuprofen布洛芬(英语:Ibuprofen,商品名:芬必得、普罗芬),是一种非类固醇消炎药(NSAID),用来止痛,退烧和消炎。可用于治疗经痛、偏头痛,和类风湿性关节炎。大约60%的人在使用任意一种NSAID后症状
- 前房积血前房积血(hyphema)指眼睛的角膜前房因积血而导致眼角膜泛红,眼角膜也可能肿胀。通常因受到撞击而导致眼角膜前房积血。前房积血可能导致暂时性失明。需要医药治疗否则可能导致
- CD4+1CDH, 1CDI, 1CDJ, 1CDU, 1CDY, 1G9M, 1G9N, 1GC1, 1JL4, 1Q68, 1RZJ, 1RZK, 1WBR, 1WIO, 1WIP, 1WIQ, 2B4C, 2JKR, 2JKT, 2KLU, 2NXY, 2NXZ, 2NY0, 2NY1, 2NY2, 2NY3, 2NY4
- 风能风能主要应用为风力发电,系利用风提供能量,以带动风力发动机运转;另可用于非电力应用,例如帆船、风车等。在电力应用普及以前,人们就懂得利用风能,例如在公元前人们就已经用帆船横
- 工业发酵发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种技术。发酵工程的内容包括菌种选育、培养基的配置
- 目的论目的论(英语:Teleology)属于哲学的范畴,致力于探讨事物产生的目的、本源和其归宿。传统上目的论与哲学自然论(或偶然论)是对立的。例如,自然论者会认为人有眼睛所以人有视力,即所谓
- 日耳曼语族日耳曼语族是印欧语系的一支,是居住在北部欧洲日耳曼民族的语族。这一族语言有鲜明的特征,最著名的有关于辅音演变的格里姆定律。一些早期(约公元2世纪)的日耳曼语言发展出自己
- 公园公园是供公众消遣游憩的场所。公园可以指下列场所:早期的公园出现于波斯国的苑囿,原目的为供骑射的驰道和遮蔽风雨的处所,美化后成为公园。公园在古希腊时期,是露天集会场地,希腊
- 医学伦理医学伦理学(英语:medical ethics)是在人类以预防、医疗卫生行为、医学研究以及卫生事业管理等有关的道德现象的基础上,确立伦理学依据及其概念体系,概括出基本的伦理原则或准则、
- 活检活体组织切片(biopsy),从动物或人类身上取下少量活组织作病理学诊断的一种检查方法。活检对肿瘤的临床诊断有重要意义,不仅可以确定其组织分类,还可确定其良性或恶性,为治疗提供依
