首页 >
常微分方程
✍ dations ◷ 2025-04-04 11:21:29 #常微分方程
在数学分析中,常微分方程(英语:ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移
s
{displaystyle s}
和时间
t
{displaystyle t}
的关系就可以表示为如下常微分方程:其中
m
{displaystyle m}
是物体的质量,
f
(
s
)
{displaystyle f(s)}
是物体所受的力,是位移的函数。所要求解的未知函数是位移
s
{displaystyle s}
,它只以时间
t
{displaystyle t}
为自变量。一些微分方程有精确封闭形式的解,这里给出几个重要的类型。在下表中,
P
(
x
)
,
Q
(
x
)
;
P
(
y
)
,
Q
(
y
)
{displaystyle P(x),Q(x);P(y),Q(y)}
和
M
(
x
,
y
)
,
N
(
x
,
y
)
{displaystyle M(x,y),N(x,y)}
是任意关于
x
,
y
{displaystyle x,y}
的可积(英语:Integrable)函数,
b
,
c
{displaystyle b,c}
是给定的实常数,
C
,
C
1
,
C
2
…
{displaystyle C,C_{1},C_{2}ldots }
是任意常数(一般为复数)。这些微分方程的等价或替代形式通过积分可以得到解。在积分解中,
λ
{displaystyle lambda }
和
ϵ
{displaystyle epsilon }
是积分变量(求和下标的连续形式),记号
∫
x
F
(
λ
)
d
λ
{displaystyle int ^{x}F(lambda )dlambda }
只表示
F
(
λ
)
{displaystyle F(lambda )}
对
λ
{displaystyle lambda }
积分,在积分以后
λ
=
x
{displaystyle lambda {}=x}
替换,无需加常数(明确说明)。P
1
(
x
)
Q
1
(
y
)
+
P
2
(
x
)
Q
2
(
y
)
d
y
d
x
=
0
{displaystyle P_{1}(x)Q_{1}(y)+P_{2}(x)Q_{2}(y),{frac {dy}{dx}}=0,!}P
1
(
x
)
Q
1
(
y
)
d
x
+
P
2
(
x
)
Q
2
(
y
)
d
y
=
0
{displaystyle P_{1}(x)Q_{1}(y),dx+P_{2}(x)Q_{2}(y),dy=0,!}d
y
d
x
=
F
(
x
)
{displaystyle {frac {dy}{dx}}=F(x),!}d
y
=
F
(
x
)
d
x
{displaystyle dy=F(x),dx,!}d
y
d
x
=
F
(
y
)
{displaystyle {frac {dy}{dx}}=F(y),!}d
y
=
F
(
y
)
d
x
{displaystyle dy=F(y),dx,!}P
(
y
)
d
y
d
x
+
Q
(
x
)
=
0
{displaystyle P(y){frac {dy}{dx}}+Q(x)=0,!}P
(
y
)
d
y
+
Q
(
x
)
d
x
=
0
{displaystyle P(y),dy+Q(x),dx=0,!}d
y
d
x
=
F
(
y
x
)
{displaystyle {frac {dy}{dx}}=Fleft({frac {y}{x}}right),!}y
M
(
x
y
)
+
x
N
(
x
y
)
d
y
d
x
=
0
{displaystyle yM(xy)+xN(xy),{frac {dy}{dx}}=0,!}y
M
(
x
y
)
d
x
+
x
N
(
x
y
)
d
y
=
0
{displaystyle yM(xy),dx+xN(xy),dy=0,!}ln
(
C
x
)
=
∫
x
y
N
(
λ
)
d
λ
λ
[
N
(
λ
)
−
M
(
λ
)
]
{displaystyle ln(Cx)=int ^{xy}{frac {N(lambda ),dlambda }{lambda }},!}如果
N
=
M
{displaystyle N=M}
, 解为
x
y
=
C
{displaystyle xy=C}
.M
(
x
,
y
)
d
y
d
x
+
N
(
x
,
y
)
=
0
{displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M
(
x
,
y
)
d
y
+
N
(
x
,
y
)
d
x
=
0
{displaystyle M(x,y),dy+N(x,y),dx=0,!}其中
∂
M
∂
x
=
∂
N
∂
y
{displaystyle {frac {partial M}{partial x}}={frac {partial N}{partial y}},!}其中
Y
(
y
)
{displaystyle Y(y)}
和
X
(
x
)
{displaystyle X(x)}
是积分出来的函数而不是常数,将它们列在这里以使最终函数
F
(
x
,
y
)
{displaystyle F(x,y)}
满足初始条件。M
(
x
,
y
)
d
y
d
x
+
N
(
x
,
y
)
=
0
{displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M
(
x
,
y
)
d
y
+
N
(
x
,
y
)
d
x
=
0
{displaystyle M(x,y),dy+N(x,y),dx=0,!}其中
∂
M
∂
x
≠
∂
N
∂
y
{displaystyle {frac {partial M}{partial x}}neq {frac {partial N}{partial y}},!}∂
(
μ
M
)
∂
x
=
∂
(
μ
N
)
∂
y
{displaystyle {frac {partial (mu M)}{partial x}}={frac {partial (mu N)}{partial y}},!}F
(
x
,
y
)
=
∫
y
μ
(
x
,
λ
)
M
(
x
,
λ
)
d
λ
+
∫
x
μ
(
λ
,
y
)
N
(
λ
,
y
)
d
λ
+
Y
(
y
)
+
X
(
x
)
=
C
{displaystyle {begin{aligned}F(x,y)&=int ^{y}mu (x,lambda )M(x,lambda ),dlambda +int ^{x}mu (lambda ,y)N(lambda ,y),dlambda \&+Y(y)+X(x)=C\end{aligned}},!}d
2
y
d
x
2
=
F
(
y
)
{displaystyle {frac {d^{2}y}{dx^{2}}}=F(y),!}d
y
d
x
+
P
(
x
)
y
=
Q
(
x
)
{displaystyle {frac {dy}{dx}}+P(x)y=Q(x),!}d
2
y
d
x
2
+
b
d
y
d
x
+
c
y
=
r
(
x
)
{displaystyle {frac {d^{2}y}{dx^{2}}}+b{frac {dy}{dx}}+cy=r(x),!}特解
y
p
{displaystyle y_{p}}
:一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的
r
(
x
)
{displaystyle r(x)}
可以直观判断。如果
b
2
>
4
c
{displaystyle b^{2}>4c}
, 则:y
c
=
C
1
e
(
−
b
+
b
2
−
4
c
)
x
2
+
C
2
e
−
(
b
+
b
2
−
4
c
)
x
2
{displaystyle y_{c}=C_{1}e^{left(-b+{sqrt {b^{2}-4c}}right){frac {x}{2}}}+C_{2}e^{-left(b+{sqrt {b^{2}-4c}}right){frac {x}{2}}},!}如果
b
2
=
4
c
{displaystyle b^{2}=4c}
, 则:y
c
=
(
C
1
x
+
C
2
)
e
−
b
x
2
{displaystyle y_{c}=(C_{1}x+C_{2})e^{-{frac {bx}{2}}},!}如果
b
2
<
4
c
{displaystyle b^{2}<4c}
, 则:y
c
=
e
−
b
x
2
[
C
1
sin
(
|
b
2
−
4
c
|
x
2
)
+
C
2
cos
(
|
b
2
−
4
c
|
x
2
)
]
{displaystyle y_{c}=e^{-{frac {bx}{2}}}left,!}∑
j
=
0
n
b
j
d
j
y
d
x
j
=
r
(
x
)
{displaystyle sum _{j=0}^{n}b_{j}{frac {d^{j}y}{dx^{j}}}=r(x),!}特解
y
p
{displaystyle y_{p}}
:一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的
r
(
x
)
{displaystyle r(x)}
可以直观判断。由于
α
j
{displaystyle alpha _{j}}
为
n
{displaystyle n}
阶多项式的解:
∏
j
=
1
n
(
α
−
α
j
)
=
0
{displaystyle prod _{j=1}^{n}left(alpha -alpha _{j}right)=0,!}
,于是:对于各不相同的
α
j
{displaystyle alpha _{j}}
,y
c
=
∑
j
=
1
n
C
j
e
α
j
x
{displaystyle y_{c}=sum _{j=1}^{n}C_{j}e^{alpha _{j}x},!}每个根
α
j
{displaystyle alpha _{j}}
重复
k
j
{displaystyle k_{j}}
次,y
c
=
∑
j
=
1
n
(
∑
ℓ
=
1
k
j
C
ℓ
x
ℓ
−
1
)
e
α
j
x
{displaystyle y_{c}=sum _{j=1}^{n}left(sum _{ell =1}^{k_{j}}C_{ell }x^{ell -1}right)e^{alpha _{j}x},!}对于一些复数值的 αj,令 α = χj + iγj,使用欧拉公式,前面结果中的一些项就可以写成的形式,其中 ϕj 为任意常量(相移)。
相关
- 抽烟吸食烟草(英语:Tobacco smoking,或称抽烟、吸烟,粤语作食烟,闽南语作食薰)是从燃烧烟草产品吸入烟草的致瘾化学物质尼古丁,特别是吸食香烟、吸食雪茄、使用烟斗等行为,香烟的主要成
- 癫痫持续状态癫痫重积状态(拉丁语:Status epilepticus (SE))的定义是一次癫痫发作超过五分钟、或是五分钟内癫痫发作超过一次且每次发作之间没有回复到正常状态。这种癫痫发作的状态可能是
- 维生素B维生素B也作维他命B,是B族维生素的总称,它们常常来自于相同的食物来源,如酵母等。维生素B是身体内新陈代谢必需的一环,每种维生素B都参与了关键的代谢反应,通常以辅酶的形式存在
- 化学生物学化学生物学(英语:Chemical Biology)是哈佛大学的斯图亚特·L·施莱伯等人所提倡,利用分子生物学的手法,搭配有机化学的方式,探讨细胞内核酸或是蛋白质等生物体内分子的功能或是反
- 快利佳洛匹那韦/利托那韦(Lopinavir/ritonavir (LPV/r);商品名:克力芝、快利佳,英语:Kaletra(在高收入国家)、英语:Aluvia(在低收入国家))是常用的抗艾滋病用药,由两种蛋白酶抑制剂洛匹那韦(复
- 甲砜霉素甲砜霉素,又名硫霉素、甲砜氯霉素或赛芬妥霉素,是一种酰胺醇类抗生素。它是氯霉素的甲基磺醘基相似体,有着相似的反应,强度却小2.5-5倍。与氯霉素相似,甲砜霉素不溶于水,但却极易溶
- 温带温带(英语:Temperate climate、德语:Gemäßigte Zone、法语:Climat tempéré),在地理学上,是位于热带和极圈之间的气候带。北半球温带区的范围是从北纬23.5°的北回归线到北纬66.
- 洁食符合犹太教教规的食物(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Ts
- 输卵管输卵管,是人和动物体内携带卵子从卵巢传递到生殖系统其他部分(对哺乳动物来说,主要是子宫)或外部的管道。女人的输卵管位于骨盆腔内,左右各一,一端膨大呈喇叭状,开口于腹腔,接受来自
- 克劳福德·朗克劳福德·威廉森·朗(Crawford Williamson Long, 1815年11月1日-1878年6月16日),美国外科医生和药剂师,一般认为是他首次使用吸入乙醚作为麻醉剂。不过他的工作在好几年中只有同