常微分方程

✍ dations ◷ 2025-09-02 08:44:08 #常微分方程
在数学分析中,常微分方程(英语:ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s {displaystyle s} 和时间 t {displaystyle t} 的关系就可以表示为如下常微分方程:其中 m {displaystyle m} 是物体的质量, f ( s ) {displaystyle f(s)} 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s {displaystyle s} ,它只以时间 t {displaystyle t} 为自变量。一些微分方程有精确封闭形式的解,这里给出几个重要的类型。在下表中, P ( x ) , Q ( x ) ; P ( y ) , Q ( y ) {displaystyle P(x),Q(x);P(y),Q(y)} 和 M ( x , y ) , N ( x , y ) {displaystyle M(x,y),N(x,y)} 是任意关于 x , y {displaystyle x,y} 的可积(英语:Integrable)函数, b , c {displaystyle b,c} 是给定的实常数, C , C 1 , C 2 … {displaystyle C,C_{1},C_{2}ldots } 是任意常数(一般为复数)。这些微分方程的等价或替代形式通过积分可以得到解。在积分解中, λ {displaystyle lambda } 和 ϵ {displaystyle epsilon } 是积分变量(求和下标的连续形式),记号 ∫ x F ( λ ) d λ {displaystyle int ^{x}F(lambda )dlambda } 只表示 F ( λ ) {displaystyle F(lambda )} 对 λ {displaystyle lambda } 积分,在积分以后 λ = x {displaystyle lambda {}=x} 替换,无需加常数(明确说明)。P 1 ( x ) Q 1 ( y ) + P 2 ( x ) Q 2 ( y ) d y d x = 0 {displaystyle P_{1}(x)Q_{1}(y)+P_{2}(x)Q_{2}(y),{frac {dy}{dx}}=0,!}P 1 ( x ) Q 1 ( y ) d x + P 2 ( x ) Q 2 ( y ) d y = 0 {displaystyle P_{1}(x)Q_{1}(y),dx+P_{2}(x)Q_{2}(y),dy=0,!}d y d x = F ( x ) {displaystyle {frac {dy}{dx}}=F(x),!}d y = F ( x ) d x {displaystyle dy=F(x),dx,!}d y d x = F ( y ) {displaystyle {frac {dy}{dx}}=F(y),!}d y = F ( y ) d x {displaystyle dy=F(y),dx,!}P ( y ) d y d x + Q ( x ) = 0 {displaystyle P(y){frac {dy}{dx}}+Q(x)=0,!}P ( y ) d y + Q ( x ) d x = 0 {displaystyle P(y),dy+Q(x),dx=0,!}d y d x = F ( y x ) {displaystyle {frac {dy}{dx}}=Fleft({frac {y}{x}}right),!}y M ( x y ) + x N ( x y ) d y d x = 0 {displaystyle yM(xy)+xN(xy),{frac {dy}{dx}}=0,!}y M ( x y ) d x + x N ( x y ) d y = 0 {displaystyle yM(xy),dx+xN(xy),dy=0,!}ln ⁡ ( C x ) = ∫ x y N ( λ ) d λ λ [ N ( λ ) − M ( λ ) ] {displaystyle ln(Cx)=int ^{xy}{frac {N(lambda ),dlambda }{lambda }},!}如果 N = M {displaystyle N=M} , 解为 x y = C {displaystyle xy=C} .M ( x , y ) d y d x + N ( x , y ) = 0 {displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M ( x , y ) d y + N ( x , y ) d x = 0 {displaystyle M(x,y),dy+N(x,y),dx=0,!}其中 ∂ M ∂ x = ∂ N ∂ y {displaystyle {frac {partial M}{partial x}}={frac {partial N}{partial y}},!}其中 Y ( y ) {displaystyle Y(y)} 和 X ( x ) {displaystyle X(x)} 是积分出来的函数而不是常数,将它们列在这里以使最终函数 F ( x , y ) {displaystyle F(x,y)} 满足初始条件。M ( x , y ) d y d x + N ( x , y ) = 0 {displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M ( x , y ) d y + N ( x , y ) d x = 0 {displaystyle M(x,y),dy+N(x,y),dx=0,!}其中 ∂ M ∂ x ≠ ∂ N ∂ y {displaystyle {frac {partial M}{partial x}}neq {frac {partial N}{partial y}},!}∂ ( μ M ) ∂ x = ∂ ( μ N ) ∂ y {displaystyle {frac {partial (mu M)}{partial x}}={frac {partial (mu N)}{partial y}},!}F ( x , y ) = ∫ y μ ( x , λ ) M ( x , λ ) d λ + ∫ x μ ( λ , y ) N ( λ , y ) d λ + Y ( y ) + X ( x ) = C {displaystyle {begin{aligned}F(x,y)&=int ^{y}mu (x,lambda )M(x,lambda ),dlambda +int ^{x}mu (lambda ,y)N(lambda ,y),dlambda \&+Y(y)+X(x)=C\end{aligned}},!}d 2 y d x 2 = F ( y ) {displaystyle {frac {d^{2}y}{dx^{2}}}=F(y),!}d y d x + P ( x ) y = Q ( x ) {displaystyle {frac {dy}{dx}}+P(x)y=Q(x),!}d 2 y d x 2 + b d y d x + c y = r ( x ) {displaystyle {frac {d^{2}y}{dx^{2}}}+b{frac {dy}{dx}}+cy=r(x),!}特解 y p {displaystyle y_{p}} :一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的 r ( x ) {displaystyle r(x)} 可以直观判断。如果 b 2 > 4 c {displaystyle b^{2}>4c} , 则:y c = C 1 e ( − b + b 2 − 4 c ) x 2 + C 2 e − ( b + b 2 − 4 c ) x 2 {displaystyle y_{c}=C_{1}e^{left(-b+{sqrt {b^{2}-4c}}right){frac {x}{2}}}+C_{2}e^{-left(b+{sqrt {b^{2}-4c}}right){frac {x}{2}}},!}如果 b 2 = 4 c {displaystyle b^{2}=4c} , 则:y c = ( C 1 x + C 2 ) e − b x 2 {displaystyle y_{c}=(C_{1}x+C_{2})e^{-{frac {bx}{2}}},!}如果 b 2 < 4 c {displaystyle b^{2}<4c} , 则:y c = e − b x 2 [ C 1 sin ⁡ ( | b 2 − 4 c | x 2 ) + C 2 cos ⁡ ( | b 2 − 4 c | x 2 ) ] {displaystyle y_{c}=e^{-{frac {bx}{2}}}left,!}∑ j = 0 n b j d j y d x j = r ( x ) {displaystyle sum _{j=0}^{n}b_{j}{frac {d^{j}y}{dx^{j}}}=r(x),!}特解 y p {displaystyle y_{p}} :一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的 r ( x ) {displaystyle r(x)} 可以直观判断。由于 α j {displaystyle alpha _{j}} 为 n {displaystyle n} 阶多项式的解: ∏ j = 1 n ( α − α j ) = 0 {displaystyle prod _{j=1}^{n}left(alpha -alpha _{j}right)=0,!} ,于是:对于各不相同的 α j {displaystyle alpha _{j}} ,y c = ∑ j = 1 n C j e α j x {displaystyle y_{c}=sum _{j=1}^{n}C_{j}e^{alpha _{j}x},!}每个根 α j {displaystyle alpha _{j}} 重复 k j {displaystyle k_{j}} 次,y c = ∑ j = 1 n ( ∑ ℓ = 1 k j C ℓ x ℓ − 1 ) e α j x {displaystyle y_{c}=sum _{j=1}^{n}left(sum _{ell =1}^{k_{j}}C_{ell }x^{ell -1}right)e^{alpha _{j}x},!}对于一些复数值的 αj,令 α = χj + iγj,使用欧拉公式,前面结果中的一些项就可以写成的形式,其中 ϕj 为任意常量(相移)。

相关

  • 破伤风破伤风(英语:Tetanus/Lockjaw),俗称四六风、脐带风、七日风,因为在婴儿出生后4至6天,少数早至2天或迟至14天以上发病。当破损的皮肤或粘膜被感染,或新生儿由于切断脐带时被感染,破伤
  • 肾上腺素能受体激动剂肾上腺素能受体(英语:Adrenergic receptors,或称为肾上腺素受体)是一类接受儿茶酚胺类物质刺激的代谢型G蛋白偶联受体,所接受的儿茶酚胺类主要是去甲肾上腺素以及肾上腺素。尽管
  • 烟灰缸烟灰缸,是一个盛载烟灰、烟头的器皿,形状似一个开口碗、有盖的盒、邮箱,或者垃圾桶等。烟灰缸用料为耐燃物料,包括石、瓦、金属等。礼品公司不少利用烟灰缸表面作广告宣传。在禁
  • 受精受精也称作配子结合或受胎,指来自同一物种的生殖细胞(配子)结合并形成新生物个体的过程。对动物来说,这个过程是由精子及卵子融合,最后发育形成胚胎。依照不同的动物物种,受精可以
  • 盎格鲁美洲盎格鲁美洲(英语:Anglo-America),又称英语美洲,用作描述以英语为主要语言,或者与英格兰或英伦三岛在历史、语言或文化上有密切关系的美洲地区,也可以指英语世界的美洲部分,与操罗曼
  • 可待因可待因(Codeine),化学式为C18H21NO3,是一种鸦片类药物(opioid),有止痛、止咳和止泻的药效,它的硫酸盐或磷酸盐常用于药品中。可待因是一种存在于鸦片中的生物碱,含量约占0.7-2.5%。它
  • 银川市银川市,简称银,古称中兴路、兴庆府、怀远镇、宁夏省城,是中华人民共和国宁夏回族自治区首府,位于宁夏中北部。市境北接石嘴山市,东抵内蒙古自治区鄂尔多斯市,南达吴忠市,西界内蒙古
  • 纽约大学纽约大学(英语:New York University,缩写为NYU)是一所位于纽约市曼哈顿的研究型私立大学。主要的校区位于曼哈顿格林威治村的附近区域,以华盛顿广场为中心。于1831年成立,今日已经
  • 托马斯·里德托马斯·里德(英文:Thomas Reid,1710年4月26日-1796年10月7日)是18世纪苏格兰启蒙运动时期哲学家,苏格兰常识学派的创始人。里德开始任教于亚伯丁大学,后到格拉斯哥大学接任亚当·
  • 黏膜下层黏膜下层(英文为submucosa或tela submucosa)是一类存在于消化道、呼吸道、泌尿生殖系统等处器官管腔中的的较为致密的结缔组织,由不规则致密结缔组织(英语:dense irregular conne