常微分方程

✍ dations ◷ 2024-12-22 15:08:33 #常微分方程
在数学分析中,常微分方程(英语:ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程。对于微积分的基本概念,请参见微积分、微分学、积分学等条目。很多科学问题都可以表示为常微分方程,例如根据牛顿第二运动定律,物体在力的作用下的位移 s {displaystyle s} 和时间 t {displaystyle t} 的关系就可以表示为如下常微分方程:其中 m {displaystyle m} 是物体的质量, f ( s ) {displaystyle f(s)} 是物体所受的力,是位移的函数。所要求解的未知函数是位移 s {displaystyle s} ,它只以时间 t {displaystyle t} 为自变量。一些微分方程有精确封闭形式的解,这里给出几个重要的类型。在下表中, P ( x ) , Q ( x ) ; P ( y ) , Q ( y ) {displaystyle P(x),Q(x);P(y),Q(y)} 和 M ( x , y ) , N ( x , y ) {displaystyle M(x,y),N(x,y)} 是任意关于 x , y {displaystyle x,y} 的可积(英语:Integrable)函数, b , c {displaystyle b,c} 是给定的实常数, C , C 1 , C 2 … {displaystyle C,C_{1},C_{2}ldots } 是任意常数(一般为复数)。这些微分方程的等价或替代形式通过积分可以得到解。在积分解中, λ {displaystyle lambda } 和 ϵ {displaystyle epsilon } 是积分变量(求和下标的连续形式),记号 ∫ x F ( λ ) d λ {displaystyle int ^{x}F(lambda )dlambda } 只表示 F ( λ ) {displaystyle F(lambda )} 对 λ {displaystyle lambda } 积分,在积分以后 λ = x {displaystyle lambda {}=x} 替换,无需加常数(明确说明)。P 1 ( x ) Q 1 ( y ) + P 2 ( x ) Q 2 ( y ) d y d x = 0 {displaystyle P_{1}(x)Q_{1}(y)+P_{2}(x)Q_{2}(y),{frac {dy}{dx}}=0,!}P 1 ( x ) Q 1 ( y ) d x + P 2 ( x ) Q 2 ( y ) d y = 0 {displaystyle P_{1}(x)Q_{1}(y),dx+P_{2}(x)Q_{2}(y),dy=0,!}d y d x = F ( x ) {displaystyle {frac {dy}{dx}}=F(x),!}d y = F ( x ) d x {displaystyle dy=F(x),dx,!}d y d x = F ( y ) {displaystyle {frac {dy}{dx}}=F(y),!}d y = F ( y ) d x {displaystyle dy=F(y),dx,!}P ( y ) d y d x + Q ( x ) = 0 {displaystyle P(y){frac {dy}{dx}}+Q(x)=0,!}P ( y ) d y + Q ( x ) d x = 0 {displaystyle P(y),dy+Q(x),dx=0,!}d y d x = F ( y x ) {displaystyle {frac {dy}{dx}}=Fleft({frac {y}{x}}right),!}y M ( x y ) + x N ( x y ) d y d x = 0 {displaystyle yM(xy)+xN(xy),{frac {dy}{dx}}=0,!}y M ( x y ) d x + x N ( x y ) d y = 0 {displaystyle yM(xy),dx+xN(xy),dy=0,!}ln ⁡ ( C x ) = ∫ x y N ( λ ) d λ λ [ N ( λ ) − M ( λ ) ] {displaystyle ln(Cx)=int ^{xy}{frac {N(lambda ),dlambda }{lambda }},!}如果 N = M {displaystyle N=M} , 解为 x y = C {displaystyle xy=C} .M ( x , y ) d y d x + N ( x , y ) = 0 {displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M ( x , y ) d y + N ( x , y ) d x = 0 {displaystyle M(x,y),dy+N(x,y),dx=0,!}其中 ∂ M ∂ x = ∂ N ∂ y {displaystyle {frac {partial M}{partial x}}={frac {partial N}{partial y}},!}其中 Y ( y ) {displaystyle Y(y)} 和 X ( x ) {displaystyle X(x)} 是积分出来的函数而不是常数,将它们列在这里以使最终函数 F ( x , y ) {displaystyle F(x,y)} 满足初始条件。M ( x , y ) d y d x + N ( x , y ) = 0 {displaystyle M(x,y){frac {dy}{dx}}+N(x,y)=0,!}M ( x , y ) d y + N ( x , y ) d x = 0 {displaystyle M(x,y),dy+N(x,y),dx=0,!}其中 ∂ M ∂ x ≠ ∂ N ∂ y {displaystyle {frac {partial M}{partial x}}neq {frac {partial N}{partial y}},!}∂ ( μ M ) ∂ x = ∂ ( μ N ) ∂ y {displaystyle {frac {partial (mu M)}{partial x}}={frac {partial (mu N)}{partial y}},!}F ( x , y ) = ∫ y μ ( x , λ ) M ( x , λ ) d λ + ∫ x μ ( λ , y ) N ( λ , y ) d λ + Y ( y ) + X ( x ) = C {displaystyle {begin{aligned}F(x,y)&=int ^{y}mu (x,lambda )M(x,lambda ),dlambda +int ^{x}mu (lambda ,y)N(lambda ,y),dlambda \&+Y(y)+X(x)=C\end{aligned}},!}d 2 y d x 2 = F ( y ) {displaystyle {frac {d^{2}y}{dx^{2}}}=F(y),!}d y d x + P ( x ) y = Q ( x ) {displaystyle {frac {dy}{dx}}+P(x)y=Q(x),!}d 2 y d x 2 + b d y d x + c y = r ( x ) {displaystyle {frac {d^{2}y}{dx^{2}}}+b{frac {dy}{dx}}+cy=r(x),!}特解 y p {displaystyle y_{p}} :一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的 r ( x ) {displaystyle r(x)} 可以直观判断。如果 b 2 > 4 c {displaystyle b^{2}>4c} , 则:y c = C 1 e ( − b + b 2 − 4 c ) x 2 + C 2 e − ( b + b 2 − 4 c ) x 2 {displaystyle y_{c}=C_{1}e^{left(-b+{sqrt {b^{2}-4c}}right){frac {x}{2}}}+C_{2}e^{-left(b+{sqrt {b^{2}-4c}}right){frac {x}{2}}},!}如果 b 2 = 4 c {displaystyle b^{2}=4c} , 则:y c = ( C 1 x + C 2 ) e − b x 2 {displaystyle y_{c}=(C_{1}x+C_{2})e^{-{frac {bx}{2}}},!}如果 b 2 < 4 c {displaystyle b^{2}<4c} , 则:y c = e − b x 2 [ C 1 sin ⁡ ( | b 2 − 4 c | x 2 ) + C 2 cos ⁡ ( | b 2 − 4 c | x 2 ) ] {displaystyle y_{c}=e^{-{frac {bx}{2}}}left,!}∑ j = 0 n b j d j y d x j = r ( x ) {displaystyle sum _{j=0}^{n}b_{j}{frac {d^{j}y}{dx^{j}}}=r(x),!}特解 y p {displaystyle y_{p}} :一般运用常数变易法(英语:method of variation of parameters),虽然对于非常容易的 r ( x ) {displaystyle r(x)} 可以直观判断。由于 α j {displaystyle alpha _{j}} 为 n {displaystyle n} 阶多项式的解: ∏ j = 1 n ( α − α j ) = 0 {displaystyle prod _{j=1}^{n}left(alpha -alpha _{j}right)=0,!} ,于是:对于各不相同的 α j {displaystyle alpha _{j}} ,y c = ∑ j = 1 n C j e α j x {displaystyle y_{c}=sum _{j=1}^{n}C_{j}e^{alpha _{j}x},!}每个根 α j {displaystyle alpha _{j}} 重复 k j {displaystyle k_{j}} 次,y c = ∑ j = 1 n ( ∑ ℓ = 1 k j C ℓ x ℓ − 1 ) e α j x {displaystyle y_{c}=sum _{j=1}^{n}left(sum _{ell =1}^{k_{j}}C_{ell }x^{ell -1}right)e^{alpha _{j}x},!}对于一些复数值的 αj,令 α = χj + iγj,使用欧拉公式,前面结果中的一些项就可以写成的形式,其中 ϕj 为任意常量(相移)。

相关

  • Β-内酰胺类抗生素β-内酰胺类抗生素(Beta-lactam antibiotic)是一种种类很广的抗生素,其中包括青霉素及其衍生物、头孢菌素、单酰胺环类(英语:monobactam)、碳青霉烯和青霉烯类酶抑制剂等。基本上
  • 醛固酮拮抗剂抗盐皮质激素(anti-mineralocorticoid、或称"醛固酮拮抗剂"(aldosterone antagonist)、醛固酮受体拮抗剂、醛甾酮拮抗剂)是指一种利尿剂能拮抗在盐皮质激素受体(Mineralocor
  • 隔离在医疗保健设施(英语:health care facilitiess)中的隔离是指为了达到感染控制(英语:infection control)的目的,需进行的多个方法之一:预防感染性疾病(英语:contagious disease)由患者身
  • 雪暴雪暴(英语:Blizzard),又称暴风雪、飞雪,-5℃以下大降水量天气的统称,且伴有强烈的冷空气气流。雪暴的形成类似于与暴风雨相似。在冬天,当云中的温度变得很低时,使云中的小水滴结冻。
  • Ru4d7 5s12, 8, 18, 15, 1蒸气压第一:710.2 kJ·mol−1 第二:1620 kJ·mol−1 第三:2747 kJ·mol主条目:钌的同位素钌(拼音:liǎo,注音:ㄌㄧㄠˇ,粤拼:liu5)是一种化学元素,化学符号为
  • 南美洲南亚美利加洲(西班牙语:Sudamérica 或 América del Sur;葡萄牙语:América do Sul;法语:Amérique du Sud;英语:South America;荷兰语:Zuid-Amerika;字源:阿美利哥·维斯普西),简称南美
  • 温带大陆性温带大陆性气候是温带地区最冷月均温小于0ºC,降水较少的一种气候。可细分为温带大陆性湿润气候和温带干旱半干旱气候。
  • 咪唑咪唑(英语:Imidazole),即1,3-二氮唑,是一个五元杂环芳香性有机化合物,化学式C3H4N2。它也是一个生物碱。白色或浅黄色固体结晶,可溶于水、氯仿、醇、醚,具有酸性,也具有碱性。氢原子
  • 查士丁尼大瘟疫查士丁尼大瘟疫是公元541至542年发生在拜占庭帝国的一场大瘟疫。当时包括首都君士坦丁堡在内多地受到影响。关于是次瘟疫的具体疾病,最广为接受的说法是鼠疫。大瘟疫分为五次
  • 水泡状胎块葡萄胎也称水泡状胎、水泡状胎块(Hydatidiform Mole) 是一种异常的人类妊娠,系由着床但未成功发育的受精卵所造成。因其特征为胎盘绒毛间质水肿,形成透明或半透明的薄壁水泡,形似