有限几何学

✍ dations ◷ 2025-04-26 13:32:00 #有限几何学
在数学中,有限几何是满足某些几何学公理,但仅含有限个点的几何系统。欧氏几何并非有限,因为它必包含一条欧氏直线,其上的点一一对应于实数。有限几何系统可以依维度分类,为简单起见,以下仅介绍低维度的情形。有限平面几何可以分为仿射与射影两类。在仿射空间中可以探讨线的平行性,射影空间则否。定义. 仿射平面是一个非空集 X {displaystyle X} (其成员称为点)及一族 X {displaystyle X} 的子集 L {displaystyle L} (其成员称为线),使之满足下述条件:最后一条公设保证几何非空,前两条公设确定了几何的性质。最简单的仿射平面由四点构成,其中任两点决定唯一一条线,所以此平面有六条线。这可以设想为四面体的顶点与边。一般而言, n {displaystyle n} 阶仿射平面有 n 2 {displaystyle n^{2}} 个点与 n 2 + n {displaystyle n^{2}+n} 条线;每条线含 n {displaystyle n} 点,每点落于 n + 1 {displaystyle n+1} 条线。定义. 射影平面是一个非空集 X {displaystyle X} (其成员称为点)及一族 X {displaystyle X} 的子集 L {displaystyle L} (其成员称为线),使之满足下述条件:在上述公理中,我们可以交换点及线的角色,这蕴含了射影几何的对偶性:若射影几何的某命题成立,则将命题中的点与线互换后,新命题依然成立。最简单的射影平面称作 Fano 平面,又称二阶射影平面,由七条线及七个点构成。若除去任一直线(及其上之点),将得到二阶仿射平面。一般而言, n {displaystyle n} 阶射影平面的点、线个数均为 n 2 + n + 1 {displaystyle n^{2}+n+1} ,每条线含 n + 1 {displaystyle n+1} 个点,每个点落于 n + 1 {displaystyle n+1} 条线。对任意正整数 n {displaystyle n} , n {displaystyle n} 阶射影或仿射平面的存在性至今未解。一般的猜想是这种几何存在当且仅当 n {displaystyle n} 是素数幂。若一映射 f : X → X {displaystyle f:Xto X} 保存共线关系,则称之为 X {displaystyle X} 的对称(或自同构)。Fano 平面的对称群同构于 P S L ( 2 , F 7 ) {displaystyle mathrm {PSL} (2,mathbb {F} _{7})} ,有 168 {displaystyle 168} 个元素。

相关

  • 硫血红蛋白硫血红蛋白为一种血红蛋白的变体,本身呈绿色,当它形成后便不能转回正常的血红蛋白。即使很少分量的硫血红蛋白在血液中存在,亦会造成发绀。其出现是罕见的现象,硫化氢(或硫离子)和
  • 人造放射性同位素(英语:radionuclide,radioactive nuclide 或 radioactive isotope),是指原子核不稳定、具有放射性的核素。每种元素的原子都有着很多种同位素,同种元素的同位素的原子
  • 分子力学分子力学采用经典力学来模拟分子体系。在分子力学中,使用分子力场方法计算出所有系统的势能。分子力学可用于研究小分子,也可用于研究具有成千乃至上百万原子数的大型生物系统
  • 自我实现人本主义的心理学大师马斯洛在1940年代提出的需求层次理论中,他将研究焦点放在心理健康的个体上,特别是那些所谓自我实现(Self-actualized)的人身上,尝试归纳出那些对生命感到满
  • 库尔特·哥德尔库尔特·弗雷德里希·哥德尔(德语:Kurt Friedrich Gödel,1906年4月28日-1978年1月14日),出生于奥匈帝国的数学家、逻辑学家和哲学家,维也纳学派(维也纳小组)的成员。哥德尔是二十世
  • 表列种姓和表列部落表列种姓(在册种姓;贱民;不可接触者;达利特;Scheduled Castes;SCs) 和表列部落(在册部落;原始部落;野蛮部落(wild tribe);山民部落(hill tribe);Scheduled Tribes;STs)是印度因历史原因形成的
  • 阿比西尼亚阿比西尼亚可以指:
  • 姚振兴姚振兴(1939年4月4日-),中国地球物理学家。出生于上海。1962年毕业于北京大学。1966年中国科学院地球物理研究所研究生毕业。1999年当选为中国科学院院士。中国科学院地质与地球
  • 泻利盐泻利盐,又名七水镁矾是一种常见的矿物,它属于不含异样正离子的水合硫酸盐。它的化学成分是七水硫酸镁(MgSO4·7H2O)。结晶时它呈斜方晶系,往往形成粒状或者皮状的晶体,很少也形成
  • 马萨达马萨达(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey A