有限几何学

✍ dations ◷ 2025-11-08 16:35:59 #有限几何学
在数学中,有限几何是满足某些几何学公理,但仅含有限个点的几何系统。欧氏几何并非有限,因为它必包含一条欧氏直线,其上的点一一对应于实数。有限几何系统可以依维度分类,为简单起见,以下仅介绍低维度的情形。有限平面几何可以分为仿射与射影两类。在仿射空间中可以探讨线的平行性,射影空间则否。定义. 仿射平面是一个非空集 X {displaystyle X} (其成员称为点)及一族 X {displaystyle X} 的子集 L {displaystyle L} (其成员称为线),使之满足下述条件:最后一条公设保证几何非空,前两条公设确定了几何的性质。最简单的仿射平面由四点构成,其中任两点决定唯一一条线,所以此平面有六条线。这可以设想为四面体的顶点与边。一般而言, n {displaystyle n} 阶仿射平面有 n 2 {displaystyle n^{2}} 个点与 n 2 + n {displaystyle n^{2}+n} 条线;每条线含 n {displaystyle n} 点,每点落于 n + 1 {displaystyle n+1} 条线。定义. 射影平面是一个非空集 X {displaystyle X} (其成员称为点)及一族 X {displaystyle X} 的子集 L {displaystyle L} (其成员称为线),使之满足下述条件:在上述公理中,我们可以交换点及线的角色,这蕴含了射影几何的对偶性:若射影几何的某命题成立,则将命题中的点与线互换后,新命题依然成立。最简单的射影平面称作 Fano 平面,又称二阶射影平面,由七条线及七个点构成。若除去任一直线(及其上之点),将得到二阶仿射平面。一般而言, n {displaystyle n} 阶射影平面的点、线个数均为 n 2 + n + 1 {displaystyle n^{2}+n+1} ,每条线含 n + 1 {displaystyle n+1} 个点,每个点落于 n + 1 {displaystyle n+1} 条线。对任意正整数 n {displaystyle n} , n {displaystyle n} 阶射影或仿射平面的存在性至今未解。一般的猜想是这种几何存在当且仅当 n {displaystyle n} 是素数幂。若一映射 f : X → X {displaystyle f:Xto X} 保存共线关系,则称之为 X {displaystyle X} 的对称(或自同构)。Fano 平面的对称群同构于 P S L ( 2 , F 7 ) {displaystyle mathrm {PSL} (2,mathbb {F} _{7})} ,有 168 {displaystyle 168} 个元素。

相关

  • 心跳加剧心跳过速(tachycardia、tachyarrhythmia),也称心动过速、心跳过快。是指心跳速度超出了正常范围,达到每分钟一百次以上的现象。剧烈的体育运动、紧张、焦虑或服用某些药物等可能
  • 血管舒张血管舒张是指在血管壁的平滑肌松弛下,令体内血管扩阔的情况。由于空间增大让血液流过,这会降低了血压。它的相反过程称为血管收缩。血管舒张可以自然产生或经由血管舒张剂引起
  • 行政院国家科学委员会科技部是中华民国有关科学技术发展的最高主管机关。负责推动国家科技发展、支援学术研究、发展科学工业园区、管理行政院国家科学技术发展基金,以及技术审查各部会科技计划可
  • 止痛镇痛药(Analgesic)是指能缓解痛的一类药物。该词起源于希腊语中的"an"(意即“没有”)和"algos"(意即“痛”)。镇痛药通过不同的机理作用于中枢和周围神经系统,对痛觉中枢有选择性抑
  • 硅化木硅化木,又称木变石,是远古树木的遗骸经过长期的化学元素替换过程(特指硅化过程)而形成的化石。生物以木质树的植物形式在地球上出现已久,遍及世界各角落,在世界六大陆都能发现。其
  • 邻氨基苯甲酸邻氨基苯甲酸又称氨茴酸、2-氨基苯甲酸,化学式:C7H7NO2,是一个氨基芳香羧酸,室温下为白色晶体粉末,用作医药、染料、香料和农药的中间体。异构体为间氨基苯甲酸和对氨基苯甲酸。
  • 蒙田米歇尔·德·蒙田(法语:Michel de Montaigne,姓又译蒙泰涅;1533年2月28日-1592年9月13日)是法国在北方文艺复兴时期最有标志性的哲学家,以《随笔集》(Essais)三卷留名后世。《随笔集
  • 头足纲头足纲(学名:Cephalopoda)是软体动物门的一个纲。化石种在一万种以上,现仅存786种,主要是各类乌贼和章鱼。头足纲可分为两个到四个亚纲,其中现存两个亚纲。一个是蛸亚纲(Coleoidea)
  • 臭鼬臭鼬(学名:Mephitis mephitis,美俚称:Skunk),是臭鼬科最著名的一种动物。臭鼬广泛分布在北美洲墨西哥以北的广大地区,在加拿大和美国都非常常见,甚至被当作宠物驯养。臭鼬的体毛为黑
  • 依赖保育 (CD)依赖保育物种又称依保物种,是IUCN中保护现状属于Conservation Dependent(cd)的一类物种。保护现状比较低,但依赖于人类保育,以防止其濒危或灭绝。观测此物种必须聚焦于一个持续的