反正切

✍ dations ◷ 2025-08-26 04:30:13 #反三角函数

反正切(arctangent、 arctan {\displaystyle \arctan } 、arctg、 tan 1 {\displaystyle \tan ^{-1}} )是一种反三角函数,是利用已知直角三角形的对边和邻边这两条直角边的比值求出其夹角大小的函数,是高等数学中的一种基本特殊函数。在三角学中,反正切被定义为一个角度,也就是正切值的反函数,由于正切函数在实数上不具有一一对应的关系,所以不存在反函数,但我们可以限制其定义域,因此,反正切是单射和满射也是可逆的,但不同于反正弦和反余弦,由于限制正切函数的定义域在 {\displaystyle } 时,其值域是全体实数,因此可得到的反函数定义域也是全体实数,而不必再进一步去限制定义域。

由于反正切函数的定义为求已知对边和邻边的角度值,刚好可以视为直角坐标系的x座标与y座标,根据斜率的定义,反正切函数可以用来求出平面上已知斜率的直线与座标轴的夹角。

反正切函数经常记为 tan 1 {\displaystyle \tan ^{-1}} ,在外文文献中常记为 arctan {\displaystyle \arctan } ,在一些旧的教科书中也有人记为arctg,但那是旧的用法,不过根据ISO 31-11标准应将反正切函数记为 arctan {\displaystyle \arctan } ,因为 tan 1 {\displaystyle \tan ^{-1}} 可能会与 1 tan {\displaystyle {\frac {1}{\tan }}} 混淆, 1 tan {\displaystyle {\frac {1}{\tan }}} 是余切函数。

原始的定义是将正切函数限制在 {\displaystyle } 的反函数
在复变分析中,反正切是这样定义的:

这个动作使反正切被推广到复数。

在直角坐标系中,反正切函数可以视为已知平面上直线斜率的倾角

反正切函数可利用泰勒展开式来求得级数的定义反正切函数的泰勒展开式为:

| x | 1 {\displaystyle \left|x\right|\leq 1} x ± i {\displaystyle x\neq \pm i} 时,这是一个收敛的级数,这使得反正切函数被定义在整个实数集上。这个级数也可以用来计算圆周率的近似值,最简单的公式是 x = 1 {\displaystyle x=1} 时的情况,称为莱布尼茨公式

更精确的写法是梅钦类公式

由于反正切函数是一个奇函数,因此满足下面等式:

反正切函数的微分导数为:

在三角函数中,atan2是反正切函数的一个变种,有两个变数,主要是提供给计算机编程语言一个简便的角度计算方式,其定义为:

正弦 · 余弦 · 正切 · 余切 · 正割 · 余割

反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割

正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数

正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理

三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 藏缅语族藏缅语族是分布于中国西南部、印度东北部、尼泊尔、巴基斯坦、不丹、缅甸、泰国、越南等地的一组语言。根据民族语网站2009年的资料,藏缅语族共包含有435种语言,其中主要的语
  • 非线性物理学非线性物理学(英语:nonlinear physics)是研究各种非线性物理现象的学科。包含了物理内的各领域。所谓线性,从数学上来讲,是指方程的解满足线性叠加原理。即方程任意两个解的线
  • 氰化物氰化物是特指带有氰离子(CN−)或氰基(-CN)的化合物,其中的碳原子和氮原子通过叁键相连接。这一叁键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团
  • 全身型过敏反应过敏性休克(英语:Anaphylaxis)反应系指一种严重的全身性过敏反应,发病极快且具有致命性。通常会伴随以下症状:起痒疹、舌头或咽喉肿胀、呼吸困难、呕吐、头晕及低血压;以上症状往
  • 阿巴斯王朝阿巴斯(英语:Abas、希腊语:Aβας),或译阿拔斯,著名的阿巴斯有:
  • 圣多美坐标:0°20′10″N 6°40′53″E / 0.33611°N 6.68139°E / 0.33611; 6.68139圣多美(葡萄牙语:São Tomé)是非洲岛国圣多美和普林西比的首都和最大城市,在圣多美岛上,2005年人口
  • 八放珊瑚八射珊瑚亚纲(学名:Octocorallia),又名海鸡冠亚纲(Alcyonaria)是珊瑚纲的一个亚纲,大约有三千个不同的种属组成,都是水生生物。所有八射珊瑚均属于八射珊瑚亚纲,泛指所有有八只辐射对
  • 菲比·沃勒-布里奇菲比·玛丽·沃勒-布里奇(英语:Phoebe Mary Waller-Bridge,1985年7月14日-),是一位英国女演员,剧作家,制片人和编剧。她最有名的作品包括由她开发、编剧以及主演的情景喜剧《情迷意
  • 加利福尼亚淘金潮“加利福尼亚州淘金潮”(California Gold Rush)(1848年-1855年),于1848年1月24日开始,事源是在沙特磨坊发现黄金。一开始消息传播得较慢,主要是当地人开始淘金,但到1849年消息传开后,
  • 柱头 (花)柱头(英语:stigma)位于花的心皮(或多个心皮愈合)的顶端,以花柱连接子房。传粉时花粉落到柱头上,并萌发出花粉管以到达胚珠。柱头通常具有粘性,并演化出各种不同有利于接受花粉的形式