里奇曲率张量

✍ dations ◷ 2025-11-06 07:09:07 #黎曼几何,广义相对论所用张量,曲率

在微分几何中,类似度量张量,里奇张量也是一个在黎曼流形每点的切空间上的对称双线性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)为名的里奇张量或里奇曲率张量(Ricci curvature tensor)。提供了一个数据去描述给定的黎曼度规(Riemannian metric)所决定的体积究竟偏离寻常欧几里得 空间多少的程度。粗略地讲,里奇张量是用来描述“体积扭曲”的一个值;也就是说,它指出了维流形中给定区域之维体积,其和欧几里得空间中与其相当之区域的体积差异程度。更精确的描述请见下文“直接的几何意义”段落。

(M,g)是一个 n-维 黎曼流形。 记 TpM 为 M 在 p 点的切空间, 任给切空间 TpM 中的一对向量 ξ, η ,Ricci 张量 Ric(ξ,η) 在 p 点的值定义为 → 的线性映射 → 的迹(trace),也就是说:

右手边 R 是所谓黎曼曲率张量,而 → 是切空间之间的线性映射,所以可以计算这映射的迹。在局部坐标系下有

其中,

已经知道里奇张量 Ric ( , ) {\displaystyle \operatorname {Ric} (\cdot ,\cdot )} ,现在就可以用里奇张量来定义里奇曲率。如果 X {\displaystyle X} p {\displaystyle p} 点的单位向量,则

定义为在点 p {\displaystyle p} X {\displaystyle X} 方向的里奇曲率(Ricci curvature),有时会把 Ric ( X , X ) {\displaystyle \textstyle \operatorname {Ric} (X,X)} 写成 Ric ( X ) {\displaystyle \textstyle \operatorname {Ric} (X)} 。也有些人会定义里奇曲率为 1 n 1 Ric ( X , X ) {\displaystyle \,\textstyle {\frac {1}{n-1}}\operatorname {Ric} (X,X)} 这里 n = dim M {\displaystyle \textstyle n=\dim M}

对于黎曼流形(M,g)里任意一点p的旁边可以定义被称为测地法座标系的局部座标系。这些通过p的测地线不但都对应着通过原点的直线,而且同时构成了从p的距离和从原点的欧几里得距离的对应。这个座标系的度量张量是

g i j = δ i j + O ( | x | 2 ) {\displaystyle g_{ij}=\delta _{ij}+O(|x|^{2})}

好处就是,此座标是欧几里得度量的良好近似。实际上,由于在法座标系的放射测地线产生的雅可比场适用的度量的泰勒展开,

可以得到 g i j = δ i j 1 3 R i k j l x k x l + O ( | x | 3 ) {\displaystyle g_{ij}=\delta _{ij}-{\frac {1}{3}}R_{ikjl}x^{k}x^{l}+O(|x|^{3})}

然后,在这个座标系,在p可以得到以下体积元素的展开。

d μ g = d μ E u c l i d e a n {\displaystyle d\mu _{g}={\Big }d\mu _{\rm {Euclidean}}}

然后,如果里奇曲率 Ric ( ξ , ξ ) {\displaystyle \operatorname {Ric} (\xi ,\xi )} 在向量 ξ {\displaystyle \xi } 的方向是正的,由于在M上从p向 ξ {\displaystyle \xi } 方向的短的测地线收束族扫过的圆锥区域的体积比在欧几里得空间对应的圆锥区域要小。如此类推,如果里奇曲率在给定的向量 ξ {\displaystyle \xi } 的方向是负的,流形同样的圆锥区域的体积比欧几里得空间对应的圆锥区域要大。

里奇曲率本质上就是包含 ξ {\displaystyle \xi } 的平面的曲率平均。也就是说最初是圆形(或者是球形)放射状的圆锥会扭曲未椭圆形状,沿着主轴的弯曲是相互相反的作用,而且有把体积变为零的可能性。然后里奇曲率沿着 ξ {\displaystyle \xi } 会变为零。在物理的应用,一定要变零的切断曲率的存在并不一定是局部性一定有什么质量。世界线圆锥最初的圆形的横切面是,要是变成了后来体积没变化的椭圆,这个效果就是来自其他位置的质量的潮汐效果。

在黎曼几何与广义相对论中,一个伪黎曼流形(pseudo-Riemannian manifold) ( M , g ) {\displaystyle (M,g)} 之无迹的里奇张量(trace-free Ricci tensor)是一个定义如下的张量

相关

  • 胡安·伊格纳西奥·西拉克·萨斯图赖因胡安·伊格纳西奥·西拉克·萨斯图赖因(西班牙语:Juan Ignacio Cirac Sasturain,1965年10月11日-),生于西班牙加泰罗尼亚曼雷萨,西班牙物理学家。他是量子计算机及量子信息论领域的
  • Fas通路细胞凋亡(英语:apoptosis,源自希腊语:απόπτωσις,有“堕落、死亡”之意),为一种细胞程序性死亡。相对于细胞坏死(necrosis),细胞凋亡是细胞主动实施的。细胞凋亡一般由生理或
  • 1047年重要事件及趋势重要人物
  • 普瑞德威利综合征普瑞德威利综合征(俗称小胖威利症,英文名Prader-Willi syndrome,PWS)是一种肇因于特定基因功能丧失的遗传性疾病 。新生儿患者会出现包括肌肉无力(英语:Hypotonia)、进食不良及发育
  • 泛大陆泛大陆(英语:Pangaea 或 Pangea),又称“超大陆”、“盘古大陆”,原文为希腊语 Παγγαία,是 πᾶν(全部)和 γαῖα(陆地;盖娅,大地女神)的合字,即“全陆地”。泛大陆是指在古生代
  • YouTube PoopYouTube Poop(通常缩写为YTP)又名YouTube粪便,是一种透过编辑现有的媒体资源而创作出来的混杂影片,目的是搞笑、淫秽、令人烦恼、困惑、震惊或戏剧化的用途。YouTube Poop有此名
  • 返顾马先蒿返顾马先蒿(学名:)为列当科马先蒿属的植物。多年生草本;长椭圆形披针形或近卵形叶子互生,边缘有锯齿,不分裂;花腋生或顶生于茎上部,夏秋间开紫红色或红色花,具有苞叶,花冠转向后方,反顾
  • 斯蒂芬·塞缪尔·怀斯斯蒂芬·塞缪尔·怀斯(英语:Stephen Samuel Wise,1874年-1949年),匈牙利裔的美国宗教领袖,激进的犹太复国主义者且是世界犹太人议会的创始人(1936年)。生于奥匈帝国时期的布达佩斯。
  • 郑寿麟郑寿麟(1900年-1990年),清广东省潮州府潮阳县(今广东省汕头市潮南区)人,著名学者。早年留学德国,毕业于德国莱比锡大学,获博士学位。历任四川大学、北京大学、中山大学等高校教授,1942
  • 亚磷酸三苯酯亚磷酸三苯酯是一种有机化合物,化学式为P(OC6H5)3。这种无色的粘稠液体是苯酚的亚磷酸酯。它在有机金属化学里是一种配体,该配体的镍配合物可用作烯烃氢氰化反应(英语:hydrocyan