里奇曲率张量

✍ dations ◷ 2025-09-10 12:02:20 #黎曼几何,广义相对论所用张量,曲率

在微分几何中,类似度量张量,里奇张量也是一个在黎曼流形每点的切空间上的对称双线性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)为名的里奇张量或里奇曲率张量(Ricci curvature tensor)。提供了一个数据去描述给定的黎曼度规(Riemannian metric)所决定的体积究竟偏离寻常欧几里得 空间多少的程度。粗略地讲,里奇张量是用来描述“体积扭曲”的一个值;也就是说,它指出了维流形中给定区域之维体积,其和欧几里得空间中与其相当之区域的体积差异程度。更精确的描述请见下文“直接的几何意义”段落。

(M,g)是一个 n-维 黎曼流形。 记 TpM 为 M 在 p 点的切空间, 任给切空间 TpM 中的一对向量 ξ, η ,Ricci 张量 Ric(ξ,η) 在 p 点的值定义为 → 的线性映射 → 的迹(trace),也就是说:

右手边 R 是所谓黎曼曲率张量,而 → 是切空间之间的线性映射,所以可以计算这映射的迹。在局部坐标系下有

其中,

已经知道里奇张量 Ric ( , ) {\displaystyle \operatorname {Ric} (\cdot ,\cdot )} ,现在就可以用里奇张量来定义里奇曲率。如果 X {\displaystyle X} p {\displaystyle p} 点的单位向量,则

定义为在点 p {\displaystyle p} X {\displaystyle X} 方向的里奇曲率(Ricci curvature),有时会把 Ric ( X , X ) {\displaystyle \textstyle \operatorname {Ric} (X,X)} 写成 Ric ( X ) {\displaystyle \textstyle \operatorname {Ric} (X)} 。也有些人会定义里奇曲率为 1 n 1 Ric ( X , X ) {\displaystyle \,\textstyle {\frac {1}{n-1}}\operatorname {Ric} (X,X)} 这里 n = dim M {\displaystyle \textstyle n=\dim M}

对于黎曼流形(M,g)里任意一点p的旁边可以定义被称为测地法座标系的局部座标系。这些通过p的测地线不但都对应着通过原点的直线,而且同时构成了从p的距离和从原点的欧几里得距离的对应。这个座标系的度量张量是

g i j = δ i j + O ( | x | 2 ) {\displaystyle g_{ij}=\delta _{ij}+O(|x|^{2})}

好处就是,此座标是欧几里得度量的良好近似。实际上,由于在法座标系的放射测地线产生的雅可比场适用的度量的泰勒展开,

可以得到 g i j = δ i j 1 3 R i k j l x k x l + O ( | x | 3 ) {\displaystyle g_{ij}=\delta _{ij}-{\frac {1}{3}}R_{ikjl}x^{k}x^{l}+O(|x|^{3})}

然后,在这个座标系,在p可以得到以下体积元素的展开。

d μ g = d μ E u c l i d e a n {\displaystyle d\mu _{g}={\Big }d\mu _{\rm {Euclidean}}}

然后,如果里奇曲率 Ric ( ξ , ξ ) {\displaystyle \operatorname {Ric} (\xi ,\xi )} 在向量 ξ {\displaystyle \xi } 的方向是正的,由于在M上从p向 ξ {\displaystyle \xi } 方向的短的测地线收束族扫过的圆锥区域的体积比在欧几里得空间对应的圆锥区域要小。如此类推,如果里奇曲率在给定的向量 ξ {\displaystyle \xi } 的方向是负的,流形同样的圆锥区域的体积比欧几里得空间对应的圆锥区域要大。

里奇曲率本质上就是包含 ξ {\displaystyle \xi } 的平面的曲率平均。也就是说最初是圆形(或者是球形)放射状的圆锥会扭曲未椭圆形状,沿着主轴的弯曲是相互相反的作用,而且有把体积变为零的可能性。然后里奇曲率沿着 ξ {\displaystyle \xi } 会变为零。在物理的应用,一定要变零的切断曲率的存在并不一定是局部性一定有什么质量。世界线圆锥最初的圆形的横切面是,要是变成了后来体积没变化的椭圆,这个效果就是来自其他位置的质量的潮汐效果。

在黎曼几何与广义相对论中,一个伪黎曼流形(pseudo-Riemannian manifold) ( M , g ) {\displaystyle (M,g)} 之无迹的里奇张量(trace-free Ricci tensor)是一个定义如下的张量

相关

  • 偏差音音乐上的偏差音(inharmonicity)是乐器的本性,代表乐器发出的泛音频率偏离其基本频率整数倍的特性。钢琴调音(调律)中,所有平均律都需要微调,因为琴弦的刚性(stiffness)会产生偏差音。
  • 高雄市客家文物馆高雄市客家文物馆,位于台湾高雄市三民区新客家文化园区内,是全国首座针对客家族群而成立的文物馆。主体为一红瓦琉璃的三合院式建筑,作为展示客家文物及举办客家文化活动的场所
  • 狼毒狼毒可以指以下植物:
  • 慎武行动参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):北约战略性胜利/ 小莱顿·史密斯(英语:Leighton W. Smith,
  • 个人理财个人理财是指应用金融学原理,指导个人或家庭的财务决策,例如根据财务状况建立合理的个人财务规划、参与投资活动等等。包括:个人收支、资产、债务、税务、保险等,当中涉及如何处
  • 性 (生物学)性是生物学上一种过程,用来混合交换基因特征。大部分生物都会分成两性,即雌性与雄性。有性生殖(Sexual production)靠专门用来生殖的生殖细胞结合,形成子息,遗传了其父母的特征。
  • 达维德·巴克拉泽达维德·巴克拉泽(或译大卫·巴克拉泽,格鲁吉亚语:დავით ბაქრაძე;1972年7月1日-)是一位格鲁吉亚政治家。在2008年6月7日至2012年10月21日期间,他曾经担任格鲁吉亚国会
  • 勃欧民族组织勃欧民族组织(缅甸语:ပအိုဝ်း အမျိုးသား အဖွဲ့ချုပ်)是一个缅甸勃欧族的政治团体。其旗下有500-600人规模的勃欧族军。1991年4月11日,勃欧族全国组织
  • 河津樱河津樱(学名: cv. Kawazu-zakura)是樱花的一种,大岛樱和寒绯樱的自然杂交种,属蔷薇科的落叶乔木植物,原生种产于日本,园艺栽培育成。树冠广卵状,树皮紫褐色,有光泽,老茎常呈片状剥落,单
  • 世华国际大楼坐标:24°09′00″N 120°39′54″E / 24.15000°N 120.66500°E / 24.15000; 120.66500世华国际大楼(Shr-Hwa International Tower,亦称台中国泰金融大楼)是座落于台湾台中市西