里奇曲率张量

✍ dations ◷ 2025-10-21 14:56:08 #黎曼几何,广义相对论所用张量,曲率

在微分几何中,类似度量张量,里奇张量也是一个在黎曼流形每点的切空间上的对称双线性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)为名的里奇张量或里奇曲率张量(Ricci curvature tensor)。提供了一个数据去描述给定的黎曼度规(Riemannian metric)所决定的体积究竟偏离寻常欧几里得 空间多少的程度。粗略地讲,里奇张量是用来描述“体积扭曲”的一个值;也就是说,它指出了维流形中给定区域之维体积,其和欧几里得空间中与其相当之区域的体积差异程度。更精确的描述请见下文“直接的几何意义”段落。

(M,g)是一个 n-维 黎曼流形。 记 TpM 为 M 在 p 点的切空间, 任给切空间 TpM 中的一对向量 ξ, η ,Ricci 张量 Ric(ξ,η) 在 p 点的值定义为 → 的线性映射 → 的迹(trace),也就是说:

右手边 R 是所谓黎曼曲率张量,而 → 是切空间之间的线性映射,所以可以计算这映射的迹。在局部坐标系下有

其中,

已经知道里奇张量 Ric ( , ) {\displaystyle \operatorname {Ric} (\cdot ,\cdot )} ,现在就可以用里奇张量来定义里奇曲率。如果 X {\displaystyle X} p {\displaystyle p} 点的单位向量,则

定义为在点 p {\displaystyle p} X {\displaystyle X} 方向的里奇曲率(Ricci curvature),有时会把 Ric ( X , X ) {\displaystyle \textstyle \operatorname {Ric} (X,X)} 写成 Ric ( X ) {\displaystyle \textstyle \operatorname {Ric} (X)} 。也有些人会定义里奇曲率为 1 n 1 Ric ( X , X ) {\displaystyle \,\textstyle {\frac {1}{n-1}}\operatorname {Ric} (X,X)} 这里 n = dim M {\displaystyle \textstyle n=\dim M}

对于黎曼流形(M,g)里任意一点p的旁边可以定义被称为测地法座标系的局部座标系。这些通过p的测地线不但都对应着通过原点的直线,而且同时构成了从p的距离和从原点的欧几里得距离的对应。这个座标系的度量张量是

g i j = δ i j + O ( | x | 2 ) {\displaystyle g_{ij}=\delta _{ij}+O(|x|^{2})}

好处就是,此座标是欧几里得度量的良好近似。实际上,由于在法座标系的放射测地线产生的雅可比场适用的度量的泰勒展开,

可以得到 g i j = δ i j 1 3 R i k j l x k x l + O ( | x | 3 ) {\displaystyle g_{ij}=\delta _{ij}-{\frac {1}{3}}R_{ikjl}x^{k}x^{l}+O(|x|^{3})}

然后,在这个座标系,在p可以得到以下体积元素的展开。

d μ g = d μ E u c l i d e a n {\displaystyle d\mu _{g}={\Big }d\mu _{\rm {Euclidean}}}

然后,如果里奇曲率 Ric ( ξ , ξ ) {\displaystyle \operatorname {Ric} (\xi ,\xi )} 在向量 ξ {\displaystyle \xi } 的方向是正的,由于在M上从p向 ξ {\displaystyle \xi } 方向的短的测地线收束族扫过的圆锥区域的体积比在欧几里得空间对应的圆锥区域要小。如此类推,如果里奇曲率在给定的向量 ξ {\displaystyle \xi } 的方向是负的,流形同样的圆锥区域的体积比欧几里得空间对应的圆锥区域要大。

里奇曲率本质上就是包含 ξ {\displaystyle \xi } 的平面的曲率平均。也就是说最初是圆形(或者是球形)放射状的圆锥会扭曲未椭圆形状,沿着主轴的弯曲是相互相反的作用,而且有把体积变为零的可能性。然后里奇曲率沿着 ξ {\displaystyle \xi } 会变为零。在物理的应用,一定要变零的切断曲率的存在并不一定是局部性一定有什么质量。世界线圆锥最初的圆形的横切面是,要是变成了后来体积没变化的椭圆,这个效果就是来自其他位置的质量的潮汐效果。

在黎曼几何与广义相对论中,一个伪黎曼流形(pseudo-Riemannian manifold) ( M , g ) {\displaystyle (M,g)} 之无迹的里奇张量(trace-free Ricci tensor)是一个定义如下的张量

相关

  • 华夏族华夏族,又称河洛民族,对于汉族与中国人起源的一个假说,认为汉族起源自黄河中游的华夏族。其后,这群人在周朝时自称为诸夏或华夏,成为汉族的前身。中华民国学者许倬云是提倡这个假
  • 赫布理论赫布理论(英语:Hebbian theory)是一个神经科学理论,解释了在学习的过程中脑中的神经元所发生的变化。赫布理论描述了突触可塑性的基本原理,即突触前神经元向突触后神经元的持续重
  • 树皮甲虫Cortylini Cryphalini Crypturgini Dryocoetini Hylastini Hylesinini Hypoborini Ipini Phloeosinini Phloeotribini Polygraphini Scolytini Scolytoplatypodini Taphrory
  • 下丘脑-垂体-肾上腺轴下视丘-垂体-肾上腺轴 (HPA或HTPA轴),也被叫做 边缘系统-下视丘-垂体-肾上腺轴(LHPA轴),是一个直接作用和反馈互动的复杂集合,包括 下视丘(脑内的一个中空漏斗状区域),脑垂体(下视丘
  • 同心同心可以指:
  • 弗洛林·加多斯弗洛林·加多斯(罗马尼亚语:Florin Gardoș;1988年10月29日-)是一位罗马尼亚足球运动员。在场上的位置是中后卫。现时效力于罗甲卡拉奥华大学。他也代表罗马尼亚国家足球队参赛。
  • 哈罗德·弗雷德里克·皮奇恩哈罗德·弗雷德里克·皮奇恩(Harold Frederick Pitcairn,1897年6月20日-1960年4月24日)是一位美国航空先驱与发明家,他对自转旋翼机的发展有着重要贡献,持有许多旋翼航空器技术专
  • 平遥牛肉平遥牛肉是中国山西省平遥县冠云牛肉店所特有的一种地域特色的卤制牛肉加工工艺。平遥的冠云牛肉店是中华老字号。冠云牛肉的传统制作工艺独特,依当地特有的土壤、水质、气候
  • 安托法加斯塔安托法加斯塔(西班牙语:Antofagasta 西班牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Cod
  • 努迪拉努迪拉(Nodira;1792年-1842年),原名莫拉洛伊姆(乌兹别克语:Моҳларойим),乌兹别克族女诗人和政治家,她的诗分别用乌兹别克语与波斯语写作。她的诗作很多也保留下来,总数超过10