里奇曲率张量

✍ dations ◷ 2025-04-02 08:56:05 #黎曼几何,广义相对论所用张量,曲率

在微分几何中,类似度量张量,里奇张量也是一个在黎曼流形每点的切空间上的对称双线性形式。以格雷戈里奥·里奇-库尔巴斯托罗(Gregorio Ricci-Curbastro)为名的里奇张量或里奇曲率张量(Ricci curvature tensor)。提供了一个数据去描述给定的黎曼度规(Riemannian metric)所决定的体积究竟偏离寻常欧几里得 空间多少的程度。粗略地讲,里奇张量是用来描述“体积扭曲”的一个值;也就是说,它指出了维流形中给定区域之维体积,其和欧几里得空间中与其相当之区域的体积差异程度。更精确的描述请见下文“直接的几何意义”段落。

(M,g)是一个 n-维 黎曼流形。 记 TpM 为 M 在 p 点的切空间, 任给切空间 TpM 中的一对向量 ξ, η ,Ricci 张量 Ric(ξ,η) 在 p 点的值定义为 → 的线性映射 → 的迹(trace),也就是说:

右手边 R 是所谓黎曼曲率张量,而 → 是切空间之间的线性映射,所以可以计算这映射的迹。在局部坐标系下有

其中,

已经知道里奇张量 Ric ( , ) {\displaystyle \operatorname {Ric} (\cdot ,\cdot )} ,现在就可以用里奇张量来定义里奇曲率。如果 X {\displaystyle X} p {\displaystyle p} 点的单位向量,则

定义为在点 p {\displaystyle p} X {\displaystyle X} 方向的里奇曲率(Ricci curvature),有时会把 Ric ( X , X ) {\displaystyle \textstyle \operatorname {Ric} (X,X)} 写成 Ric ( X ) {\displaystyle \textstyle \operatorname {Ric} (X)} 。也有些人会定义里奇曲率为 1 n 1 Ric ( X , X ) {\displaystyle \,\textstyle {\frac {1}{n-1}}\operatorname {Ric} (X,X)} 这里 n = dim M {\displaystyle \textstyle n=\dim M}

对于黎曼流形(M,g)里任意一点p的旁边可以定义被称为测地法座标系的局部座标系。这些通过p的测地线不但都对应着通过原点的直线,而且同时构成了从p的距离和从原点的欧几里得距离的对应。这个座标系的度量张量是

g i j = δ i j + O ( | x | 2 ) {\displaystyle g_{ij}=\delta _{ij}+O(|x|^{2})}

好处就是,此座标是欧几里得度量的良好近似。实际上,由于在法座标系的放射测地线产生的雅可比场适用的度量的泰勒展开,

可以得到 g i j = δ i j 1 3 R i k j l x k x l + O ( | x | 3 ) {\displaystyle g_{ij}=\delta _{ij}-{\frac {1}{3}}R_{ikjl}x^{k}x^{l}+O(|x|^{3})}

然后,在这个座标系,在p可以得到以下体积元素的展开。

d μ g = d μ E u c l i d e a n {\displaystyle d\mu _{g}={\Big }d\mu _{\rm {Euclidean}}}

然后,如果里奇曲率 Ric ( ξ , ξ ) {\displaystyle \operatorname {Ric} (\xi ,\xi )} 在向量 ξ {\displaystyle \xi } 的方向是正的,由于在M上从p向 ξ {\displaystyle \xi } 方向的短的测地线收束族扫过的圆锥区域的体积比在欧几里得空间对应的圆锥区域要小。如此类推,如果里奇曲率在给定的向量 ξ {\displaystyle \xi } 的方向是负的,流形同样的圆锥区域的体积比欧几里得空间对应的圆锥区域要大。

里奇曲率本质上就是包含 ξ {\displaystyle \xi } 的平面的曲率平均。也就是说最初是圆形(或者是球形)放射状的圆锥会扭曲未椭圆形状,沿着主轴的弯曲是相互相反的作用,而且有把体积变为零的可能性。然后里奇曲率沿着 ξ {\displaystyle \xi } 会变为零。在物理的应用,一定要变零的切断曲率的存在并不一定是局部性一定有什么质量。世界线圆锥最初的圆形的横切面是,要是变成了后来体积没变化的椭圆,这个效果就是来自其他位置的质量的潮汐效果。

在黎曼几何与广义相对论中,一个伪黎曼流形(pseudo-Riemannian manifold) ( M , g ) {\displaystyle (M,g)} 之无迹的里奇张量(trace-free Ricci tensor)是一个定义如下的张量

相关

  • ~؋ ​₳ ​ ฿ ​₿ ​ ₵ ​¢ ​₡ ​₢(英语:Brazilian cruzeiro) ​ $ ​₫ ​₯ ​֏ ​ ₠ ​€ ​ ƒ(英语:Florin sign) ​₣ ​ ₲ ​ ₴(英语:Hryvnia sign) ​ ₭ ​ ₺
  • 帕博利珠单抗帕博利珠单抗(Pembrolizumab,商品名Keytruda,中文商品名为可瑞达、吉舒达)是用于癌症免疫疗法的人源化PD-1单克隆抗体。FDA批准该药用于治疗黑色素瘤、肺癌、头颈癌、霍奇金淋巴
  • 酪氨酸羟化酶1toh与2toh· 酪氨酸3-单加氧酶活性 · 铁离子结合· 突触传递 · 心脏发育 · 学习 · 记忆 · 交配行为 · 运动器官行为 · 心脏收缩规律 · 芳香族氨基酸代谢过
  • 芯片集成电路(英语:integrated circuit,缩写作 IC;德语:integrierter Schaltkreis),或称微电路(microcircuit)、微芯片(microchip)、芯片(chip)在电子学中是一种将电路(主要包括半导体设备,也包
  • 林南林南(1938年8月21日-),华人社会学家,杜克大学社会学系教授、美国社会学学会前副会长、中央研究院院士。林南在国际社会学界有重要影响,主要研究领域为社会资本、社会关系与社会结
  • 碱性火成岩碱性火成岩泛指含有较高碱金属元素钠和钾即高比例的Na2O+K2O,包含霞石正长岩-响岩类之岩石,普遍含二氧化硅较少,约在52%以下。碱性火成岩主要由各种长石、霞石和霓闪石组成,多存
  • 陈敬熊陈敬熊(1921年10月16日-),浙江省镇海人。电磁与微波技术专家,中国工程院院士。 1947年,毕业于上海大同大学。1950年,毕业于上海交通大学电讯研究所。任航天工业总公司研究员,北京大
  • 上杉朝兴上杉 朝兴(日语:うえすぎ ともおき、长享2年(1488年)- 天文6年4月27日(1537年6月4日))武藏国的战国大名。扇谷上杉家的当主。长享2年(1488年)出生,父亲是上杉朝宁;朝兴后来成为叔父上杉
  • 九氢合铼(VII)酸钠九氢合铼(VII)酸钠是一种过渡金属氢负离子配合物,化学式为Na2。金属钠还原高铼酸钠或高铼酸铵的乙醇溶液可以得到。Na2可溶于水和甲醇,微溶于乙醇。
  • 赛车总动员3《赛车总动员3》(英语:)是一部由皮克斯动画工作室制作、并由华特迪士尼发行的2017年美国3D计算机动画电影,为布莱恩·费(英语:Brian Fee)执导。本片为2011年的电影《赛车总动员2》