双三角锥

✍ dations ◷ 2025-11-23 05:38:51 #双三角锥
在几何学中,双三角锥是一种基底为三角形的双锥体,其为三角柱的对偶。若每个面皆为正三角形,则为92种Johnson多面体(J12)中的其中一个,也是双角锥的其中一种。顾名思义,它可由正多面体中的两个大小相同的正四面体组合而成。这92种詹森多面体最早在1996年由詹森·诺曼(英语:Norman Johnson (mathematician))(Norman Johnson)命名并给予描述。若不考虑每个面皆为正三角形,只考虑基底为正三角形时,则有可能为广义的半正多面体的对偶,正三角柱的对偶,此时能使用施莱夫例符号表示,计为{ } + {3},而在考克斯特符号中,则可以用或表示。双三角锥的对偶多面体是三角柱,但詹森多面体中所描述的双三角锥其对偶多面体不是一个正三角柱,是一种五面体由三个矩形和二个三角形组成。双三角锥可以由三角形二面体透过三角化变换构造而来,因此与三角形二面体具有相同的对称性,其可以衍生出一些相关的多面体:三角柱 · 四角柱 · 五角柱 · 六角柱 · 七角柱 · 八角柱 · 九角柱 · ... · 无限角柱(双曲)三角反柱 · 四角反柱 · 五角反柱 · 六角反柱 · 七角反柱 · 八角反柱 · ... · 无限角反柱三角锥柱 · 四角锥柱 · 五角锥柱 · 六角锥柱 · 七角锥柱 · 八角锥柱 · ... · 无限角锥柱

相关

  • 马里亚纳海沟马里亚纳海沟,或称马里亚纳群岛海沟,为地球目前已知最深的海沟。该海沟地处西北太平洋的海床,坐标11°21′N 142°12′E / 11.350°N 142.200°E / 11.350; 142.200,位于关岛和
  • 柯霍海因里希·赫尔曼·罗伯特·科赫(德语:Heinrich Hermann Robert Koch,1843年12月11日-1910年5月27日),德国医师兼微生物学家,为细菌学始祖之一,与路易·巴斯德共享盛名。1905年,因结
  • 脸盲症脸盲症,即面部识别能力缺乏症。英文学名为prosopagnosia,亦可称为face blindness,该症状表现一般分为两种:患者看不清别人的脸;患者对别人的脸型失去辨认能力。Template:Lesions
  • 吡咯赖氨酸吡咯赖氨酸(Pyrrolysine;简称:Pyl 或 O)是一种自然存在而少见的编码氨基酸,其编码为UAG(琥珀),该密码子通常为终止密码子。这是人们到目前为止发现的第22种,也是最后一种编码氨基酸(第
  • 雅兹迪教雅兹迪教(库尔德语:Êzidîtî‎/Êzidî‎、阿拉伯文:يزيدي‎/ايزيدي‎),是中东一种古老而独特的宗教。雅兹迪教徒可以说是一种族教群体(Ethnoreligious group),但雅兹迪
  • QJ01A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码J01(抗菌药)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Collaboratin
  • 真盘龙亚目真盘龙亚目(Eupelycosauria)起初指的是盘龙目的一个亚目,但现在重新定义为真盘龙类,是合弓动物的一个演化支,包括大多数盘龙类、兽孔目、哺乳类。它们首次出现于石炭纪晚期(早宾夕
  • 爱德华·毕希纳爱德华·比希纳(德语:Eduard Buchner,1860年5月20日-1917年8月13日),德国化学家,1907年获诺贝尔化学奖。布赫纳1860年生于慕尼黑的一个医生家庭之中,1884年于慕尼黑大学追随阿道夫·
  • 经筵经筵是中国、朝鲜古代帝王为讲论经史而特设的御前讲席。汉代以来即经久不绝,但到宋代始称经筵,讲官以翰林学士及其他官员兼任或充任讲官。宋代,以每年二月至端午、每年八月至冬
  • 朝鲜正祖朝鲜正祖(朝鲜语:조선 정조/朝鮮 正祖 Joseon Jeongjo;1752年10月28日(农历9月22日)-1800年8月18日(农历6月28日)),名讳李祘(朝鲜语:이산/李祘 Yi San),朝鲜王朝的第22代君主,1776年至1800