首页 >
文本情感分析
✍ dations ◷ 2025-11-15 09:33:29 #文本情感分析
文本情感分析(也称为意见挖掘)是指用自然语言处理、文本挖掘以及计算机语言学等方法来识别和提取原素材中的主观信息。通常来说,情感分析的目的是为了找出说话者/作者在某些话题上或者针对一个文本两极的观点的态度。这个态度或许是他或她的个人判断或是评估,也许是他当时的情感状态(就是说,作者在做出这个言论时的情绪状态),或是作者有意向的情感交流(就是作者想要读者所体验的情绪)。文本情感分析的一个基本步骤是对文本中的某段已知文字的两极性进行分类,这个分类可能是在句子级、功能级。分类的作用就是判断出此文字中表述的观点是积极的、消极的、还是中性的情绪。更高级的“超出两极性”的情感分析还会寻找更复杂的情绪状态,比如“生气”、“悲伤”、“快乐” 等等。在文本情感分析领域,早期做出研究贡献的有 Turney 和 Pang 他们运用了多种方法探测商品评论和电影影评的两极观点。此研究是建立在文档级所进行的分析。另一种文档意见的分类方式可以是多重等级的,Pang
和 Snyder (among others): 延伸了早先的基础两极意见研究,将电影影评分类并预测为3至4星的多重级别,而 Snyder 就餐馆评论做了个深度分析,从多种不同方面预测餐馆的评分,比如食物、气氛等等 (在一个5星的等级制度上)。尽管在大多数统计方面的分类方式中,“中性” 类是经常被忽略的,因为“中性”类的文本经常是处于一个两极分类的边缘地带,但是很多研究者指出,在每个两极化问题当中,都应该识别出三个不同的类别。进一步的说,一些现有的分类方式 例如 Max Entropy 和 SVMs 可以证明,在分类过程中区分出“中性”类可以帮助提高分类算法的整体准确率。另一种判定文本情绪的方法是利用比例换算系统。当一个词普遍被认为跟消极、中性或是积极的情感有关联时,将这个词赋予一个-10到+10之中的数字级别(最消极到最正向情感),在使用自然语言处理来分析一个非结构化文本数据后,余下的的概念也可以被分析来得出词与概念的相关性。 接下来,每一个概念都可以被赋予一个分数,这个分数是基于情感词汇和这个概念的关联度,以及他们本身的分数而得出的。这个方法让文本情感的理解晋升到一个更加智能的层面,并且是基于一个11分的等级范围的。另外一种方法是,计算出文本正向的和消极的情感力度分数, 如果研究的目的是要判定一个文本的感情,而不是总体文本集的两极分布或文字的力度。另一个研究方向是“主观/客观 识别”。这个研究
通常被定义为将一个已知文本(一般是句子)分类成两个类:主观和客观。这个问题有些时候比两极化分类问题更难解决。 主观词汇和短语可能是基于前后文语意联系,而一个客观文档有可能包含主观语句(e.g. 一篇新闻引用了某人的观点)。此外, Su 也曾提到过,得到的结论在很大程度上依赖于注释文本时对“主观”的定义。不过, Pang 证实了如果两极分类前去除文件中的客观语句,会提高算法的表现。一个更加优化的分析模型叫做“功能/属性为基础的情感分析(feature/aspect-based sentiment analysis)”。这是指判定针对一个实体在某一个方面或者某一功能下表现出来的意见或是情感, e.g. 一个实体可能是一个手机,一个电子相机,或者空白。一个“功能”或者“方面”是一件实体的某个属性或者组成部分,e.g.一个手机的屏幕,一个相机的成像质量,等等。 这个问题涉及到若干个子问题,譬如,识别相关的实体,提取他们的功能/属性,然后判断是否在提及这个功能/属性时有正面或者负面或者中性的情绪或意见。
更多关于这个层面的文本情感分析可以参照NLP手册“情感分析和主观性”这一章。现有的文本情感分析的途径大致可以集合成四类:关键词识别、词汇关联、统计方法和概念级技术。 关键词识别是利用文本中出现的清楚定义的影响词(affect words),例如“开心”、“难过”、“伤心”、“害怕”、“无聊”等等,来影响分类。词汇关联除了侦查影响词以外,还附于词汇一个和某项情绪的“关联”值。 统计方法通过调控机器学习中的元素,比如潜在语意分析(latent semantic analysis),SVM(support vector machines),词袋(bag of words),等等。(参见Peter Turney在相关领域的研究成果。)一些更智能的方法意在探测出情感持有者(保持情绪状态的那个人)和情感目标(让情感持有者产生情绪的实体)。要想挖掘在某语境下的意见,或是获取被给予意见的某项功能,需要使用到语法之间的关系。语法之间互相的关联性经常需要通过深度解析文本来获取。与单纯的语义技术不同的是,概念级的算法思路权衡了知识表达(knowledge representation)的元素,比如知识本体 (ontologies)、语义网络(semantic networks),因此这种算法也可以探查到文字间比较微妙的情绪表达。例如, 分析一些没有明确表达相关信息的概念,但是通过他们对于明确概念的不明显联系来获取所求信息。有很多开源软件使用机器学习(machine learning)、统计、自然语言处理的技术来计算大型文本集的情感分析, 这些大型文本集合包括网页、网络新闻、网上讨论群、网络评论、博客和社交媒介。
相关
- 传染病感染是指由病原体物种在身为宿主的个体内进行有害的复制、繁殖过程。具传染性的生物体会寻找并且利用宿主体内资源,以利自身生存,但这个过程一旦干扰了宿主正常的生理运作,可能
- 淋巴结淋巴结(lymph node)是淋巴系统的一部分(以往亦称做淋巴腺,但其并没有分泌物质的功能,故称为“腺”并不对),作用类似过滤器,内部蜂窝状的结构聚集了淋巴球,能够将病毒与细菌摧毁,当身体
- 快中子中子温度,亦称中子能量,指的是自由中子的动能,单位通常是电子伏特。由于中子经过不同温度的减速剂会有不同的速度分布,一般可以使用温度来衡量中子的动能。中子的能量分布基本上
- 高钙血症高血钙(Hypercalcaemia)是指血液中的钙离子(Ca2+)过高的疾病。人体一般血钙浓度在2.1–2.6 mmol/L (8.8–10.7 mg/dL, 4.3–5.2 mEq/L),若浓度高于2.6 mmol/L,就是高血钙。轻度高
- Rf5f14 6d2 7s22, 8, 18, 32, 32, 10, 2第一:579.9(估值) kJ·mol−1 第二:1389.4(估值) kJ·mol−1 第三:2296.4(估值) kJ·mol−1 (主条目:
- 丶丶部,是为汉字索引中的部首之一,康熙字典214个部首中的第三个(一划的则为第三个)。就正体和简体中文中,丶部归于一划部首。丶部通常以上方或中间为部字。且无其他部首可用者将部
- 大花马齿苋大花马齿苋(学名:Portulaca grandiflora),别称半支莲、松叶牡丹、龙须牡丹、金丝杜鹃、洋马齿苋、太阳花、午时花、并头草、狭叶韩信草、牙刷草、四方马兰、乞丐碗、向天盏,是马
- 汉考克县汉考克县(Hancock County, Georgia)是美国乔治亚州东北部的一个县。面积1,240平方公里。根据美国2000年人口普查,共有人口10,076人。县治斯巴达(Sparta)。成立于1793年12月17日,以
- 青蛙腿田鸡腿,又称青蛙腿,中国南方地区的人称为田鸡腿。是一道以蛙类为主的菜,这是一道很常见的法国和中国菜,在世界上的其它地方像加勒比海地区、波兰、美国的部分地区,人们也食用它。
- 澳门大学列表澳门大学列表列出澳门10所高等院校,当中4所为公立,6所为私立。
