在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数 轴对称的偶函数。函数不是圆角而是双曲角,它表示在轴和连接原点和双曲线上的点(,在渐近线即x或y轴上需要有的x或y的值。显见这里的底边是是实数而i2 = −1,则
所以双曲函数cosh和sinh可以通过圆函数来定义。这些恒等式不是从圆或旋转得来的,它们应当以无穷级数的方式来理解。特别是,可以将指数函数表达为由偶次项和奇次项组成,前者形成cosh函数,后者形成了sinh函数。cos函数的无穷级数可从cosh得出,通过把它变为交错级数,而sin函数可来自将sinh变为交错级数。上面的恒等式使用虚数i,从三角函数的级数的项中去掉交错因子(−1)n,来恢复为指数函数的那两部分级数。
双曲函数可以通过虚数圆角定义为:
这些复数形式的定义得出自欧拉公式。
奥古斯都·德·摩根在其1849年出版的教科书《Trigonometry and Double Algebra》中将圆三角学扩展到了双曲线。威廉·金顿·克利福德在1878年使用双曲角来参数化单位双曲线。
给定相同的角α,在双曲线上计算双曲角的量值(双曲扇形面积除以半径)得到双曲函数,角α得到三角函数。在单位圆和单位双曲线上,双曲函数与三角函数有如下的关系:
与双曲函数有关的恒等式如下:
由于双曲函数和三角函数之间的对应关系,双曲函数的恒等式和三角函数的恒等式之间也是一一对应的。对于一个已知的三角函数公式,只需要将其中的三角函数转成相应的双曲函数,并将含有有两个sinh的积的项(包括和cosh 是全纯函数。
指数函数与三角函数的关系由欧拉公式给出:
所以:
因此,双曲函数是关于虚部有周期的,周期为 (对双曲正切和余切是).
反双曲函数是双曲函数的反函数。它们的定义为:
正弦 · 余弦 · 正切 · 余切 · 正割 · 余割
反正弦 · 反余弦 · 反正切 · 反余切 · 反正割 · 反余割
正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数
正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理
三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式