电势移

✍ dations ◷ 2025-05-20 10:50:38 #电磁学,静电学

在电磁学里,电势移是出现于麦克斯韦方程组的一种矢量场,可以用来解释电介质内自由电荷所产生的效应。电势移 D {\displaystyle \mathbf {D} } 以方程定义为

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, E {\displaystyle \mathbf {E} } 是电场, P {\displaystyle \mathbf {P} } 是电极化强度。

高斯定律表明,电场的散度等于总电荷密度 ρ t o t a l {\displaystyle \rho _{total}} 除以电常数:

电极化强度的散度等于负束缚电荷密度 ρ b o u n d {\displaystyle -\rho _{bound}}

而总电荷密度等于束缚电荷密度加上自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

所以,电势移的散度等于自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

这与高斯定律的方程类似。假设,只给定自由电荷密度 ρ f r e e {\displaystyle \rho _{free}} ,或许可以用高斯方法来计算电势移 D {\displaystyle \mathbf {D} } 。但是,在这里,不能使用这方法。只知道自由电荷密度 ρ f r e e {\displaystyle \rho _{free}} ,有时候仍旧无法计算出电势移。思考以下关系式:

假设电场为不含时电场(即与时间无关的电场), × E = 0 {\displaystyle \nabla \times \mathbf {E} =0} ,则

假若 × P 0 {\displaystyle \nabla \times \mathbf {P} \neq 0} ,则虽然设定 ρ f r e e = 0 {\displaystyle \rho _{free}=0} ,电势移仍旧不等于零: D 0 {\displaystyle \mathbf {D} \neq 0}

举例而言,拥有固定电极化强度 P {\displaystyle \mathbf {P} } 的永电体,其内部不含有任何自由电荷,但是内在的电极化强度 P {\displaystyle \mathbf {P} } 会产生电场。

只有当问题本身具有某种对称性,像球对称性或圆柱对称性等等,才能够直接使用高斯方法,从自由电荷密度计算出电势移与电场。否则,必需将电极化强度 P {\displaystyle \mathbf {P} } 和边界条件纳入考量。

“线性电介质”,对于外电场的施加,会产生线性响应。例如,铁电材料是非线性电介质。假设线性电介质具有各向同性,则其电场与电极化强度的关系式为

其中, χ e {\displaystyle \chi _{e}} 是电极化率。

将这关系式代入电势移的定义式,可以得到

其中, ε {\displaystyle \varepsilon } 是电容率。

所以,电势移与电场成正比;其比率是电容率。另外,

假设这电介质具有均匀性,则电容率 ε {\displaystyle \varepsilon } 是常数:

定义相对电容率 ε r {\displaystyle \varepsilon _{r}}

相对电容率与电极化率有以下的关系:

要注意的一点是,上式 D = ε E {\displaystyle \mathbf {D} =\varepsilon \mathbf {E} } 的描述只是一种近似关系,当 E {\displaystyle \mathbf {E} } 变得很大时, D {\displaystyle \mathbf {D} } E {\displaystyle \mathbf {E} } 就不再成正比关系了。这主要是由于电介质物质的物理特性是很复杂的。也可以理解为,这个式子就像胡克定律一样,只是一种近似。

各向异性线性电介质的电容率是个张量。例如,晶体的电容率通常必需用张量来表示。

如右图所示,平行板电容器是由互相平行、以空间或电介质相隔的两片平板导体构成的电容器。假设上下两片平板导体分别含有负电荷与正电荷,含有的电荷量分别为 Q {\displaystyle -Q} + Q {\displaystyle +Q} 。又假设两片平板导体之间的间隔距离超小于平板的长度与宽度,则可以视这两片平板导体为无限平面;做简单计算时,不必顾虑边缘效应。由于系统的对称性,可以应用高斯定律来计算电势移,其方向必定是从带正电平板导体指向带负电平板导体,而且垂直于平板导体;又由于平板导体含有的电荷是自由电荷,不需要知道电介质的性质,就可以应用关于自由电荷的高斯定律来计算电势移。

先计算带正电平板导体所产生的电势移。试想一个扁长方形盒子,其顶面和底面分别在这平板导体的两边,平行于平板导体;而盒子的其它四个侧面都垂直于平板导体。根据关于自由电荷的高斯定律,

其中, S {\displaystyle \mathbb {S} } 是扁长方形盒子的闭合表面, D + {\displaystyle \mathbf {D} _{+}} 是带正电平板导体所产生的电势移, d a {\displaystyle d\mathbf {a} } 是微小面元素。

由于扁长方形盒子的四个侧面的面矢量都与 D + {\displaystyle \mathbf {D} _{+}} 矢量相垂直,它们对于积分的贡献是零;只有盒子的顶面和底面对于积分有贡献:

其中, A {\displaystyle A} 是盒子顶面、底面的面积。

所以, D + {\displaystyle \mathbf {D} _{+}} 矢量的方向是从带正电平板导体垂直地向外指出,大小为

类似地,可以计算出带负电平板导体所产生的电势移; D {\displaystyle \mathbf {D} _{-}} 矢量的方向是垂直地指向带负电平板导体,大小为

应用叠加原理,可以计算这两片带电平板导体一起产生的电势移。在这两片平板导体之间, D + {\displaystyle \mathbf {D} _{+}} D {\displaystyle \mathbf {D} _{-}} 的方向相同;应用叠加原理,电势移的大小等于平板导体的表面电荷密度: D = Q / A {\displaystyle D=Q/A} 。在两片平板导体的共同上方或共同下方, D + {\displaystyle \mathbf {D} _{+}} D {\displaystyle \mathbf {D} _{-}} 的方向相反;应用叠加原理,电势移的大小等于零。

假设电介质的电容率为 ε {\displaystyle \varepsilon } ,则在两片平板导体之间,电场的大小为

假设两片平板导体的间隔距离为 d {\displaystyle d} ,则电压 V {\displaystyle V}

这平行板电容器的电容 C {\displaystyle C}

相关

  • 玻利维亚出血热马秋波病毒玻利维亚出血热(英语:Bolivian hemorrhagic fever,简称BHF,别名有black typhus、Ordog Fever等)是一类由感染马秋波病毒引起的病毒性出血热。该疾病为人畜共通传染病,起
  • 皮肤科皮肤科(dermatology)是医学上治疗皮肤疾病的专门分支。全身的皮肤面积广大,因此皮肤是人体最大的器官。 皮肤病学是研究皮肤的结构、功能和疾病的学科,在广义上,还包含对头发、指
  • 2003年SARS殉职医护列表本表列出在2003年SARS爆发期间殉职的医疗工作者及医疗相关的人士,并依照国籍与逝世日期英文排序。
  • 榆属榆树,是榆科下榆属植物的统称,主要在北半球的温带地区生长。一般高约25米,树皮粗糙。具高度实用、药用及食用价值。榆树的叶呈椭圆形或椭圆状波针形,叶长2-8厘米、宽1.5-2.5厘米
  • 高雄港区土地开发公司高雄港区土地开发公司由台湾港务公司与高雄市政府合资成立,主要业务为高雄港旧港区土地及相关设施之开发。隶属于交通部国营事业。2017年3月29日,台湾港务公司与高雄市政府合
  • 有效温度有效温度是与一个黑体温度同等量相同的其能够发出的辐射。常在一个黑体的发射率未知时使用。有效温度是恒星依据斯特凡-波兹曼定律
  • 欧洲人权公约《欧洲人权公约》(European Convention on Human Rights, ECHR)全名为《欧洲保障人权和基本自由公约》(Convention for the Protection of Human Rights and Fundamental Freed
  • 拉玛一世帕佛陀约华朱拉洛(泰语:พระพุทธยอดฟ้าจุฬาโลก,皇家转写:Phra Phutthayotfa Chulalok;1737年3月20日-1809年9月7日),即拉玛一世(Rama I),泰国曼谷王朝(扎克里王朝)第
  • 前庭襞1 舌骨2 会厌3 前庭襞,假声带/声索,(Plica vestibularis)4 声带,真声带(Plica vocalis)5 喉室肌6 喉室(Ventriculus laryngis)7 声带肌8 喉结(甲状软骨)9 软骨环(环状软骨)10
  • 美利坚合众国宪法第十三条修正案宪法正文 I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII