电势移

✍ dations ◷ 2025-11-09 22:07:57 #电磁学,静电学

在电磁学里,电势移是出现于麦克斯韦方程组的一种矢量场,可以用来解释电介质内自由电荷所产生的效应。电势移 D {\displaystyle \mathbf {D} } 以方程定义为

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, E {\displaystyle \mathbf {E} } 是电场, P {\displaystyle \mathbf {P} } 是电极化强度。

高斯定律表明,电场的散度等于总电荷密度 ρ t o t a l {\displaystyle \rho _{total}} 除以电常数:

电极化强度的散度等于负束缚电荷密度 ρ b o u n d {\displaystyle -\rho _{bound}}

而总电荷密度等于束缚电荷密度加上自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

所以,电势移的散度等于自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

这与高斯定律的方程类似。假设,只给定自由电荷密度 ρ f r e e {\displaystyle \rho _{free}} ,或许可以用高斯方法来计算电势移 D {\displaystyle \mathbf {D} } 。但是,在这里,不能使用这方法。只知道自由电荷密度 ρ f r e e {\displaystyle \rho _{free}} ,有时候仍旧无法计算出电势移。思考以下关系式:

假设电场为不含时电场(即与时间无关的电场), × E = 0 {\displaystyle \nabla \times \mathbf {E} =0} ,则

假若 × P 0 {\displaystyle \nabla \times \mathbf {P} \neq 0} ,则虽然设定 ρ f r e e = 0 {\displaystyle \rho _{free}=0} ,电势移仍旧不等于零: D 0 {\displaystyle \mathbf {D} \neq 0}

举例而言,拥有固定电极化强度 P {\displaystyle \mathbf {P} } 的永电体,其内部不含有任何自由电荷,但是内在的电极化强度 P {\displaystyle \mathbf {P} } 会产生电场。

只有当问题本身具有某种对称性,像球对称性或圆柱对称性等等,才能够直接使用高斯方法,从自由电荷密度计算出电势移与电场。否则,必需将电极化强度 P {\displaystyle \mathbf {P} } 和边界条件纳入考量。

“线性电介质”,对于外电场的施加,会产生线性响应。例如,铁电材料是非线性电介质。假设线性电介质具有各向同性,则其电场与电极化强度的关系式为

其中, χ e {\displaystyle \chi _{e}} 是电极化率。

将这关系式代入电势移的定义式,可以得到

其中, ε {\displaystyle \varepsilon } 是电容率。

所以,电势移与电场成正比;其比率是电容率。另外,

假设这电介质具有均匀性,则电容率 ε {\displaystyle \varepsilon } 是常数:

定义相对电容率 ε r {\displaystyle \varepsilon _{r}}

相对电容率与电极化率有以下的关系:

要注意的一点是,上式 D = ε E {\displaystyle \mathbf {D} =\varepsilon \mathbf {E} } 的描述只是一种近似关系,当 E {\displaystyle \mathbf {E} } 变得很大时, D {\displaystyle \mathbf {D} } E {\displaystyle \mathbf {E} } 就不再成正比关系了。这主要是由于电介质物质的物理特性是很复杂的。也可以理解为,这个式子就像胡克定律一样,只是一种近似。

各向异性线性电介质的电容率是个张量。例如,晶体的电容率通常必需用张量来表示。

如右图所示,平行板电容器是由互相平行、以空间或电介质相隔的两片平板导体构成的电容器。假设上下两片平板导体分别含有负电荷与正电荷,含有的电荷量分别为 Q {\displaystyle -Q} + Q {\displaystyle +Q} 。又假设两片平板导体之间的间隔距离超小于平板的长度与宽度,则可以视这两片平板导体为无限平面;做简单计算时,不必顾虑边缘效应。由于系统的对称性,可以应用高斯定律来计算电势移,其方向必定是从带正电平板导体指向带负电平板导体,而且垂直于平板导体;又由于平板导体含有的电荷是自由电荷,不需要知道电介质的性质,就可以应用关于自由电荷的高斯定律来计算电势移。

先计算带正电平板导体所产生的电势移。试想一个扁长方形盒子,其顶面和底面分别在这平板导体的两边,平行于平板导体;而盒子的其它四个侧面都垂直于平板导体。根据关于自由电荷的高斯定律,

其中, S {\displaystyle \mathbb {S} } 是扁长方形盒子的闭合表面, D + {\displaystyle \mathbf {D} _{+}} 是带正电平板导体所产生的电势移, d a {\displaystyle d\mathbf {a} } 是微小面元素。

由于扁长方形盒子的四个侧面的面矢量都与 D + {\displaystyle \mathbf {D} _{+}} 矢量相垂直,它们对于积分的贡献是零;只有盒子的顶面和底面对于积分有贡献:

其中, A {\displaystyle A} 是盒子顶面、底面的面积。

所以, D + {\displaystyle \mathbf {D} _{+}} 矢量的方向是从带正电平板导体垂直地向外指出,大小为

类似地,可以计算出带负电平板导体所产生的电势移; D {\displaystyle \mathbf {D} _{-}} 矢量的方向是垂直地指向带负电平板导体,大小为

应用叠加原理,可以计算这两片带电平板导体一起产生的电势移。在这两片平板导体之间, D + {\displaystyle \mathbf {D} _{+}} D {\displaystyle \mathbf {D} _{-}} 的方向相同;应用叠加原理,电势移的大小等于平板导体的表面电荷密度: D = Q / A {\displaystyle D=Q/A} 。在两片平板导体的共同上方或共同下方, D + {\displaystyle \mathbf {D} _{+}} D {\displaystyle \mathbf {D} _{-}} 的方向相反;应用叠加原理,电势移的大小等于零。

假设电介质的电容率为 ε {\displaystyle \varepsilon } ,则在两片平板导体之间,电场的大小为

假设两片平板导体的间隔距离为 d {\displaystyle d} ,则电压 V {\displaystyle V}

这平行板电容器的电容 C {\displaystyle C}

相关

  • 后生动物真后生动物(学名:Eumetazoa)是指所有具有细胞组织的动物。动物中只有侧生动物不属于真后生动物。真后生动物细胞间有连接,就是所谓的"紧密连接"。它们的胚胎最少会发生两个胚层:
  • 软树蕨软树蕨(学名:Dicksonia antarctica),又名塔斯马尼亚蚌壳蕨,是蚌壳蕨科蚌壳蕨属的一个种。原生于澳大利亚东部的昆士兰南部、新南威尔士、维多利亚及塔斯马尼亚。可生存于酸、中性
  • 至人传统宗教仪式:神明秘密社会:中医专著《黄帝内经·上古天真论篇第一》记载:“中古之时,有至人者,淳德全道,和于阴阳,调于四时,去世离俗,积精全神,游行天地之间,视听八远之外,此盖益其寿
  • 胡斯派胡斯派(捷克语:Husité,或Kališníci;英语:Hussite),由基督教改革者扬·胡斯发起的基督教运动,成为欧洲宗教改革的前驱者。天主教会在1415年康士坦斯大公会议(Council of Constance)
  • 环境工程学环境工程为应用科学与工程之方法来改善环境(包括空气、水、土地资源),进而为人类之居住以及其他生物体提供对健康有益的水、空气以及土壤,亦包括污染场址之复育。可经由教育大众
  • 中俄伊犁塔尔巴哈台通商章程《中俄伊犁塔尔巴哈台通商章程》是咸丰元年(1851年8月6日)清政府与俄罗斯帝国签订的不平等条约。通过该约,沙俄获得了在伊犁、塔尔巴哈台两地区进行商业贸易。主要有贸易免税、
  • 明道加斯·皮耶柴提斯明道加斯·皮耶柴提斯(立陶宛语:Mindaugas Piečaitis;1969年-)是立陶宛作曲家及指挥家,其代表作为《猫咪协奏曲》。1969年生于维尔纽斯,1987年毕业于M. K. Ciurlionis艺术学院(英语
  • 高柱花科高柱花属 高柱花科又名安山草科,只有1属8种,分布在南美洲的安第斯山区。本科植物为多年生草本,主根粗,叶互生;花的花瓣5,聚合成花序;果实为蒴果。1981年的克朗奎斯特分类法将其列入
  • 赵澈权赵澈权(朝鲜语:조철권 、1929年3月22日-2007年8月2日),韩国前政府官员、陆军准将,历任劳动部长、全罗北道知事、国家报勋处长等职。其子为前驻台北韩国代表部代表赵百相。
  • 环境光传感器环境光传感器(英语:Ambient Light Sensor)是一种组件,普遍用于手机,平板电脑,笔记本电脑等电子移动设备。甚至用于汽车,液晶电视等日常生活当中,环境光传感器的国际单位是勒克斯。当