电势移

✍ dations ◷ 2025-09-12 16:03:45 #电磁学,静电学

在电磁学里,电势移是出现于麦克斯韦方程组的一种矢量场,可以用来解释电介质内自由电荷所产生的效应。电势移 D {\displaystyle \mathbf {D} } 以方程定义为

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, E {\displaystyle \mathbf {E} } 是电场, P {\displaystyle \mathbf {P} } 是电极化强度。

高斯定律表明,电场的散度等于总电荷密度 ρ t o t a l {\displaystyle \rho _{total}} 除以电常数:

电极化强度的散度等于负束缚电荷密度 ρ b o u n d {\displaystyle -\rho _{bound}}

而总电荷密度等于束缚电荷密度加上自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

所以,电势移的散度等于自由电荷密度 ρ f r e e {\displaystyle \rho _{free}}

这与高斯定律的方程类似。假设,只给定自由电荷密度 ρ f r e e {\displaystyle \rho _{free}} ,或许可以用高斯方法来计算电势移 D {\displaystyle \mathbf {D} } 。但是,在这里,不能使用这方法。只知道自由电荷密度 ρ f r e e {\displaystyle \rho _{free}} ,有时候仍旧无法计算出电势移。思考以下关系式:

假设电场为不含时电场(即与时间无关的电场), × E = 0 {\displaystyle \nabla \times \mathbf {E} =0} ,则

假若 × P 0 {\displaystyle \nabla \times \mathbf {P} \neq 0} ,则虽然设定 ρ f r e e = 0 {\displaystyle \rho _{free}=0} ,电势移仍旧不等于零: D 0 {\displaystyle \mathbf {D} \neq 0}

举例而言,拥有固定电极化强度 P {\displaystyle \mathbf {P} } 的永电体,其内部不含有任何自由电荷,但是内在的电极化强度 P {\displaystyle \mathbf {P} } 会产生电场。

只有当问题本身具有某种对称性,像球对称性或圆柱对称性等等,才能够直接使用高斯方法,从自由电荷密度计算出电势移与电场。否则,必需将电极化强度 P {\displaystyle \mathbf {P} } 和边界条件纳入考量。

“线性电介质”,对于外电场的施加,会产生线性响应。例如,铁电材料是非线性电介质。假设线性电介质具有各向同性,则其电场与电极化强度的关系式为

其中, χ e {\displaystyle \chi _{e}} 是电极化率。

将这关系式代入电势移的定义式,可以得到

其中, ε {\displaystyle \varepsilon } 是电容率。

所以,电势移与电场成正比;其比率是电容率。另外,

假设这电介质具有均匀性,则电容率 ε {\displaystyle \varepsilon } 是常数:

定义相对电容率 ε r {\displaystyle \varepsilon _{r}}

相对电容率与电极化率有以下的关系:

要注意的一点是,上式 D = ε E {\displaystyle \mathbf {D} =\varepsilon \mathbf {E} } 的描述只是一种近似关系,当 E {\displaystyle \mathbf {E} } 变得很大时, D {\displaystyle \mathbf {D} } E {\displaystyle \mathbf {E} } 就不再成正比关系了。这主要是由于电介质物质的物理特性是很复杂的。也可以理解为,这个式子就像胡克定律一样,只是一种近似。

各向异性线性电介质的电容率是个张量。例如,晶体的电容率通常必需用张量来表示。

如右图所示,平行板电容器是由互相平行、以空间或电介质相隔的两片平板导体构成的电容器。假设上下两片平板导体分别含有负电荷与正电荷,含有的电荷量分别为 Q {\displaystyle -Q} + Q {\displaystyle +Q} 。又假设两片平板导体之间的间隔距离超小于平板的长度与宽度,则可以视这两片平板导体为无限平面;做简单计算时,不必顾虑边缘效应。由于系统的对称性,可以应用高斯定律来计算电势移,其方向必定是从带正电平板导体指向带负电平板导体,而且垂直于平板导体;又由于平板导体含有的电荷是自由电荷,不需要知道电介质的性质,就可以应用关于自由电荷的高斯定律来计算电势移。

先计算带正电平板导体所产生的电势移。试想一个扁长方形盒子,其顶面和底面分别在这平板导体的两边,平行于平板导体;而盒子的其它四个侧面都垂直于平板导体。根据关于自由电荷的高斯定律,

其中, S {\displaystyle \mathbb {S} } 是扁长方形盒子的闭合表面, D + {\displaystyle \mathbf {D} _{+}} 是带正电平板导体所产生的电势移, d a {\displaystyle d\mathbf {a} } 是微小面元素。

由于扁长方形盒子的四个侧面的面矢量都与 D + {\displaystyle \mathbf {D} _{+}} 矢量相垂直,它们对于积分的贡献是零;只有盒子的顶面和底面对于积分有贡献:

其中, A {\displaystyle A} 是盒子顶面、底面的面积。

所以, D + {\displaystyle \mathbf {D} _{+}} 矢量的方向是从带正电平板导体垂直地向外指出,大小为

类似地,可以计算出带负电平板导体所产生的电势移; D {\displaystyle \mathbf {D} _{-}} 矢量的方向是垂直地指向带负电平板导体,大小为

应用叠加原理,可以计算这两片带电平板导体一起产生的电势移。在这两片平板导体之间, D + {\displaystyle \mathbf {D} _{+}} D {\displaystyle \mathbf {D} _{-}} 的方向相同;应用叠加原理,电势移的大小等于平板导体的表面电荷密度: D = Q / A {\displaystyle D=Q/A} 。在两片平板导体的共同上方或共同下方, D + {\displaystyle \mathbf {D} _{+}} D {\displaystyle \mathbf {D} _{-}} 的方向相反;应用叠加原理,电势移的大小等于零。

假设电介质的电容率为 ε {\displaystyle \varepsilon } ,则在两片平板导体之间,电场的大小为

假设两片平板导体的间隔距离为 d {\displaystyle d} ,则电压 V {\displaystyle V}

这平行板电容器的电容 C {\displaystyle C}

相关

  • 嗜伊红性脑膜炎脑膜炎(英语:meningitis)指发生于脑膜的急性炎症,脑膜是包裹大脑和脊髓的保护薄膜。脑膜炎最常见的症状是发热、头痛和颈部僵硬。其他症状还包含精神错乱(英语:mental confusion)或
  • 边缘效应边缘效应(英语:Edge effects),是指生态系统中,生物种群在两个或更多栖息地交界或边缘的变化。在生态学中,群落交错区或群落边缘带的生物种类较多,除了包含邻近群落的种类外,往往还有
  • 三氯生二氯苯氧氯酚,俗名“三氯生”,又名“三氯新”、“三氯沙”等,化学名为“2,4,4'-三氯-2'-羟基-二苯醚”,英文名为 Triclosan 、 Aquasept、 Gamophen、 Irgasan、 Sapoderm 、 St
  • 休伊什安东尼·休伊什,FRS(英语:Antony Hewish,1924年5月11日-),生于英格兰康沃尔郡福伊,英国射电天文学家,与马丁·赖尔共同获得1974年诺贝尔物理奖,以表彰他在射电合成孔径的发展与脉冲星
  • 辐射卵割受精卵高速分裂,但总的体积和物质并不增加:细胞的数目越来越多,个头却越来越小。这一时期即为卵裂(cleavage)。卵裂按其分裂形式可以分为下列两类:脊椎动物常见卵裂分为两大类:完全
  • 合作学习合作学习是一种通过学生之间相互依赖、相互沟通,共同促进学生的主体性发展及社会化发展的过程,它强调学生之间合作性的人际互动,强调学生在教学过程中通过相互之间的合作来达到
  • 英属哥伦比亚不列颠哥伦比亚大学(英语:University of British Columbia,法语:Université de la Colombie-Britannique,简称UBC),简称卑诗大学或卑大,是一所位于加拿大卑斯省的公立大学,也是U15大
  • 瑟普赖斯市瑟普赖斯(英语:Surprise)是美国亚利桑那州马里科帕县的一座城市,也是菲尼克斯都会区继吉尔伯特之后人口增长速度第二快的市:根据美国人口普查局的数据,该城2000年普查时只有30,848
  • 2017年5月台湾
  • 百合铁《百合铁~私立百合咲女子高铁道部~》(日语:ゆりてつ 私立百合ヶ咲女子高鉄道部),是松山清治的日本漫画作品。同作者作品《铁娘三姐妹》的间接续篇,但画风有巨大的差异。2011年4月至