皮萨诺周期

✍ dations ◷ 2025-07-16 06:13:56 #数论

在数论当中, 自然数  的皮萨诺周期(通常记为π())是指 斐波那契数列模 后的周期,以意大利数学家莱昂纳多·皮萨诺(即斐波那契)的名字命名. 斐波那契数列中模周期的存在性曾在1774年为约瑟夫·拉格朗日所提及.

斐波那契数是指斐波那契数列中的数:

斐波那契数列由下方的递推关系定义

对于任意整数, 数列{ (mod )}为周期数列. 皮萨诺周期()记为该数列的周期. 例如,模3的斐波那契数列前若干项为:

这一数列以8为周期,故(3) = 8.

除去(2) = 3 以外,皮萨诺周期必为偶数这一性质的一个简单证明可由如下事实导出:

则π(n)应等同于矩阵 F 在一般线性群2(ℤ)的阶,其中GL2(ℤn)表示在整数模 环上全体二阶可逆矩阵构成的乘法群. 由于F的行列式为-1,可知在ℤn中有(-1)(n) = 1, 故(n)为偶数.

当 互质时,由中国剩余定理即知()等于()和()的最小公倍数. 例如,(3) = 8 而(4) = 6,由此可得(12) = 24. 因此,对皮萨诺周期的研究可以化归为对素数幂 = ≥ 1)的皮萨诺周期的研究。

可以证明,若为素数,则()整除–1().有猜想认为 π ( p k ) = p k 1 π ( p ) {\displaystyle \pi (p^{k})=p^{k-1}\pi (p)} 及整数 > 1成立. 任何不满足该猜想的素数都必然是一个沃尔-孙-孙素数,而这种素数被猜想并不存在.

因此对皮萨诺周期的研究可以被进一步化归为对素数的皮萨诺周期的研究.出于这种考虑,需要特别指出两个反常的素数. 素数2的皮萨诺周期为奇数,而素数5的皮萨诺周期和其他素数相比“大得多”.这两个素数的幂的皮萨诺周期为:

由此可知对 = 2·5有() = 6.

2和5以外的所有素数均属于共轭类 p ± 1 ( mod 10 ) {\displaystyle p\equiv \pm 1{\pmod {10}}} () 是 2 – – 1 的根模的指数. 当 p ± 1 ( mod 10 ) {\displaystyle p\equiv \pm 1{\pmod {10}}} ()整除 – 1. 例如,(11) = 11 – 1 = 10,(29) = (29 – 1)/2 = 14.

p ± 2 ( mod 5 ) , {\displaystyle p\equiv \pm 2{\pmod {5}},} 2 – – 1 的根不在 F p {\displaystyle \mathbb {F} _{p}} 和交换,因而 = 故+1 = –1. 由此可得2(+1) = 1, 故的阶, 也即,是2(+1)除以某个奇数的商,因而必为4的倍数. 在这种情况中,最小的三个满足()的例子为(47) = 2(47 + 1)/3 = 32, (107) = 2(107 + 1)/3 = 72 及(113) = 2(113 + 1)/3 = 76.

据上述讨论,若 = 是一个奇素数幂,满足() > , 则()/4 是一个不大于的整数. 利用皮萨诺周期的乘积性质,可得

等号成立当且仅当 = 2 · 5,  ≥ 1. 最小的两个等号成立的例子为(10) = 60 及 (50) = 300. 若  不能表示为 2 · 5的形式,则() ≤ 4.

前十二个自然数的皮萨诺周期(OEIS中的数列A001175)及其对应的一个周期内的所有数列举如下(为可读性起见,在每个0前加有空格;X,E分别表示10,11):

如果 = (2) ( ≥ 2), 那么π() = 4;如果 = (2 + 1) ( ≥ 2), 那么π() = 8 + 4. 换而言之,模 F(2k) (k ≥ 2)的一个周期内有两个0,而模F (2k + 1) (k ≥ 2)的一个周期内有四个0.

相关

  • 霉草科参见正文霉草科共包括8属约48种,广泛分布在全球热带和亚热带区域,包括东南亚、中南美洲、非洲、马达加斯加岛北部和澳大利亚东北,中国只有喜荫草属(Sciaphila)1属3种,分布在海南和
  • 国际气象组织世界气象组织(英语:World Meteorological Organization,缩写:WMO;法语:L'Organisation météorologique mondiale,缩写:OMM;世界语:Monda Organizaĵo pri Meteologio,缩写:MOM)是联合国
  • 非类固醇抗发炎药非甾体消炎药(英语:Non-Steroidal Anti-Inflammatory Drug,縮寫作NSAID),也译作非类固醇抗炎药,是一类具有解热镇痛效果的药物,在施用较高剂量时也具有消炎作用。“非甾体”一词用
  • 克罗地亚独立国解体 · 内战克罗地亚独立国(克罗地亚语:Nezavisna Država Hrvatska;德语:Unabhängiger Staat Kroatien;意大利语:Stato Indipendente di Croazia)是一个由纳粹德国和意大利王国
  • 马纳瓦图-旺加努伊马纳瓦图-旺加努伊大区(毛利语:Manawatū-Whanganui)是新西兰的一个大区,位于北岛。总面积22,215平方公里,总人口230,200。 主要城市有北帕莫斯顿、旺加努伊等。马纳瓦图-旺加努
  • 新右派新右派(英语:the New Right)与新左派都是一种社会运动,而新右派乃是相对于“老右派”而产生。其理论基础以弗里德里希·哈耶克、弗里德曼的思想为基本。新右派与新保守主义相同
  • 太阳半径太阳半径是天文学中的长度单位,使用目前太阳的半径为基准来表示恒星大小:太阳的半径大约是695,500 公里(432,450英里)或大约地球半径的110倍,或是木星平均半径的10倍。由于自转的
  • 阿努希-拉瓦尼·哈姆拉巴德阿努希-拉瓦尼·哈姆拉巴德(波斯语:سجاد انوشیروانی‎,1984年5月21日-)是一名伊朗举重运动员,身高1.9米。2010年,在广州亚运会中以427千克夺得男子105公斤以上级举重
  • 中国保护植物红皮书中华人民共和国国家保护植物名录即中国保护植物红皮书首先于1984年被中国国务院批准。以后几年又有了一些更改。
  • Damage《Damage》是安室奈美惠以个人单独名义发行的首张数位单曲,2012年10月24日开始提供片段下载,10月31日开始提供全曲下载,12月5日开始提供音乐录影带下载。