皮萨诺周期

✍ dations ◷ 2025-05-20 03:42:38 #数论

在数论当中, 自然数  的皮萨诺周期(通常记为π())是指 斐波那契数列模 后的周期,以意大利数学家莱昂纳多·皮萨诺(即斐波那契)的名字命名. 斐波那契数列中模周期的存在性曾在1774年为约瑟夫·拉格朗日所提及.

斐波那契数是指斐波那契数列中的数:

斐波那契数列由下方的递推关系定义

对于任意整数, 数列{ (mod )}为周期数列. 皮萨诺周期()记为该数列的周期. 例如,模3的斐波那契数列前若干项为:

这一数列以8为周期,故(3) = 8.

除去(2) = 3 以外,皮萨诺周期必为偶数这一性质的一个简单证明可由如下事实导出:

则π(n)应等同于矩阵 F 在一般线性群2(ℤ)的阶,其中GL2(ℤn)表示在整数模 环上全体二阶可逆矩阵构成的乘法群. 由于F的行列式为-1,可知在ℤn中有(-1)(n) = 1, 故(n)为偶数.

当 互质时,由中国剩余定理即知()等于()和()的最小公倍数. 例如,(3) = 8 而(4) = 6,由此可得(12) = 24. 因此,对皮萨诺周期的研究可以化归为对素数幂 = ≥ 1)的皮萨诺周期的研究。

可以证明,若为素数,则()整除–1().有猜想认为 π ( p k ) = p k 1 π ( p ) {\displaystyle \pi (p^{k})=p^{k-1}\pi (p)} 及整数 > 1成立. 任何不满足该猜想的素数都必然是一个沃尔-孙-孙素数,而这种素数被猜想并不存在.

因此对皮萨诺周期的研究可以被进一步化归为对素数的皮萨诺周期的研究.出于这种考虑,需要特别指出两个反常的素数. 素数2的皮萨诺周期为奇数,而素数5的皮萨诺周期和其他素数相比“大得多”.这两个素数的幂的皮萨诺周期为:

由此可知对 = 2·5有() = 6.

2和5以外的所有素数均属于共轭类 p ± 1 ( mod 10 ) {\displaystyle p\equiv \pm 1{\pmod {10}}} () 是 2 – – 1 的根模的指数. 当 p ± 1 ( mod 10 ) {\displaystyle p\equiv \pm 1{\pmod {10}}} ()整除 – 1. 例如,(11) = 11 – 1 = 10,(29) = (29 – 1)/2 = 14.

p ± 2 ( mod 5 ) , {\displaystyle p\equiv \pm 2{\pmod {5}},} 2 – – 1 的根不在 F p {\displaystyle \mathbb {F} _{p}} 和交换,因而 = 故+1 = –1. 由此可得2(+1) = 1, 故的阶, 也即,是2(+1)除以某个奇数的商,因而必为4的倍数. 在这种情况中,最小的三个满足()的例子为(47) = 2(47 + 1)/3 = 32, (107) = 2(107 + 1)/3 = 72 及(113) = 2(113 + 1)/3 = 76.

据上述讨论,若 = 是一个奇素数幂,满足() > , 则()/4 是一个不大于的整数. 利用皮萨诺周期的乘积性质,可得

等号成立当且仅当 = 2 · 5,  ≥ 1. 最小的两个等号成立的例子为(10) = 60 及 (50) = 300. 若  不能表示为 2 · 5的形式,则() ≤ 4.

前十二个自然数的皮萨诺周期(OEIS中的数列A001175)及其对应的一个周期内的所有数列举如下(为可读性起见,在每个0前加有空格;X,E分别表示10,11):

如果 = (2) ( ≥ 2), 那么π() = 4;如果 = (2 + 1) ( ≥ 2), 那么π() = 8 + 4. 换而言之,模 F(2k) (k ≥ 2)的一个周期内有两个0,而模F (2k + 1) (k ≥ 2)的一个周期内有四个0.

相关

  • 二氧化碳二氧化碳(IUPAC名:carbon dioxide,分子式:CO2)是空气中常见的化合物,由两个氧原子与一个碳原子通过共价键连接而成。空气中有微量的二氧化碳,约占0.04%。二氧化碳略溶于水中,形成碳酸
  • 再生障碍性贫血再生不良性贫血(aplastic anemia/aplastic anaemia)也叫再生障碍性贫血(简称再障),是指骨髓未能生产足够或新的细胞来补充血液细胞的情况。一般来说,贫血是指低的红血球统计,但患有
  • 化学史化学史的范围从远古时代一直延伸到今日。到了公元前100000年,各个古文明的科技,像是从矿石提炼金属、制作陶器、酿酒、制作颜料、从植物中提取香料和药物、制备奶酪、染布、制
  • 病毒 §起源一个位于宿主细胞之外的独立、功能完全的病毒颗粒一些病毒拥有的包裹病毒体的脂肪泡一段DNA或RNA。如果把核苷酸比作字的话,那么基因就是由核苷酸写成的句子。基因会指导病毒
  • 达拉斯-沃斯堡国际机场达拉斯/沃思堡国际机场(英语:Dallas/Fort Worth International Airport,IATA代码:DFW;ICAO代码:KDFW;FAA代码:DFW),是一座位于美国德克萨斯州达拉斯/沃思堡的民用机场,是德克萨斯州最大
  • 旋风计算机旋风计算机(Whirlwind),一款由麻省理工大学研制的早期电子计算机。引入了当时先进的实时处理理念,并最先采用显示器作为输出设备,与以往机械系统的电子置换不同,拥有世界首款成熟
  • 玛丽·莱什琴斯卡玛丽·卡罗利娜·索非娅·费利奇娅·莱什琴斯卡(波兰语:Maria Karolina Zofia Felicja Leszczyńska,在历史上以玛丽·莱什琴斯卡(Maria Leszczyńska)之名更为人所知;1703年9月4
  • 伊加尔卡伊加尔卡(Ига́рка)是俄罗斯克拉斯诺亚尔斯克边疆区图鲁汉斯基区的一个城市,位于叶尼塞河下游右岸,地处北极圈以北163公里,2010年人口有6,183人。伊加尔卡建城于1929年,原先
  • 狄奥多·施笃姆狄奥多·施笃姆(Theodor Storm,1817年9月14日-1888年7月4日),德国作家。狄奥多·施笃姆出生于石勒苏益格公国西边海岸的小镇胡苏姆。他的父母是约翰·施笃姆(1790年-1874年)和露西·
  • 陈伯山陈伯山(550年-589年),南北朝陈朝鄱阳王,字静之。世祖文帝陈蒨第三子,母亲为严淑媛。陈伯山为人英伟,举止闲雅,喜愠不形于色,陈蒨非常器重他。当初陈霸先建立陈朝时,刚刚得到天下,诸王受