多胞形

✍ dations ◷ 2025-10-25 16:08:48 #多胞形
多胞形是一类由平的边界构成的几何结构。多胞形可以存在于任意维中。多边形为二维多胞形,多面体为三维多胞形,也可以延伸到三维以上的空间,如多胞体即为四维多胞形。当提到n度空间下的多胞形时,常会用n-多胞形的名称来表示,因此多边形可称为2-多胞形,多面体可称为3-多胞形,多胞体即为4-多胞形。多胞体的英文polytope是由数学家Hoppe创造,其原文为德文,后来才由艾丽西亚·布尔·斯托特(英语:Alicia Boole Stott)翻译为英文。简单多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时,简单多边形是指自身元素中没有互相相交情况的多边形。而在讨论其他维度的立体时,简单多胞形代表与每个顶点相邻之边或面数不会超过其维数的多胞形。复杂多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时(尤其是四边形),复杂多边形(讨论四边形时称复杂四边形)是指自身元素中有互相相交情况的多边形,同时也可以推广到多胞形的情况,即指自身元素中有互相相交情况的多胞形。在电脑图学中,也可以用来指非简单的几何形状。此外,复杂多胞形在英语中称为Complex Polytope,其亦可以代表位于复数(Complex Number)空间的复多胞形。凸多胞形是最简单的多胞形,并且存在有几种不同的概念性定义。例如凸多胞形有时被定义为一组半空间的交集,这个个定义下并不强制多胞形是有界的也不强制多胞形是有限的,其中有界的多胞形意味着存在一个能涵盖整个多胞形且半径是有限的球体或超球体。若其为凸集且符合有界和有限的特性则可以称为严格凸多胞形。在线性规划中通常会利用这种方式来定义多胞形正多胞形是对称性最高的一种多胞形,在这种多胞形中,各种同维元素或同结构元素组皆可在其对称性上传递,甚至其对称性也能在标记(包含所有维度元素组)上传递,因此正多胞形的对偶多胞形也是一种正多胞形。星形多胞形通常是指一系列的非凸多胞形,其中包括了一些正多胞形。由于并非所有流形都是有限的,因此若将多胞体理解为在一个流形中由胞结构组成的空间填充,则可以将之扩展到无穷流形中。平面密铺、空间堆砌和双曲镶嵌多可以算是这类多胞形。这种解合结构因为有无限多个维面,因此有时会被称为无限胞体实多胞形是指所有顶点皆位于 R n {displaystyle mathbb {R} ^{n}} 空间的多胞形,通常会和复多胞形进行比较,例如实多胞形可以定义内部而复多胞形无法。另外,在抽象几何学(英语:Abstract polytope)中,实多胞形也可以表达与抽象多胞形相对的概念。实多胞形是指所有顶点皆位于 C n {displaystyle mathbb {C} ^{n}} 复希尔伯特空间的多胞形,可以视为实数空间中的多胞形在复数空间的推广。而复正多胞形更适合被视为一种排布结构。在几何中,四元多胞形是指位于四元数空间的多胞形。其可以视为是实数空间中的多胞形在四元数空间的推广。其与复数空间类似,点不具有序性,因此没有“位于...之间”的相互关系,因此一个四元数空间多胞形可以被理解为一组点、线和面等的排布关系,其中,点维多条线的连接点、线连接了多个面。由于四元数的乘法不具有交换率,因此必须透过标量与向量相乘来构建乘法系统,通常会使用左乘法。多胞形通常可以定义于希尔伯特空间中,如复多胞形(Complex polytope)、四元多胞形(Quaternionic polytope)或八元多胞形(Octonionic Polytope)等,不过在一些复杂的空间结构的多胞形,如八元多胞形的理论尚未被有系统的探讨及解决。抽象多胞形是一种纯粹只考虑多胞形各元素间的组合特性,将多胞形从其包含的空间几何关系分离出来的一类多胞形。这允许将多胞形各元素的定义扩展到包括一些位于难以在直观下定义之空间的物件,例如四维正十一胞体。抽象多胞形是遵守某些规则之元素的偏序集合,并且是一个纯粹的代数结构,其发展的目的是为了避免或解决一些不同类型的几何结构难以在一致的数学框架下协调的问题。拓朴多胞形是一个可以分解为与凸多胞形拓朴等价的形状、且可以规则方式分解为相互连接的形状的拓朴空间

相关

  • 林可酰胺类抗生素林克酰胺类抗生素(英语:Lincosamides)是一类抗生素,主要包括了克林霉素和林可霉素。这类抗生素对革兰氏阳性菌作用较强,对厌氧菌效果较好。林克酰胺类抗生素能够与核糖体上的50S
  • 生态系统理论生态系统理论(Ecological Systems Theory),有时也被称作背景发展理论或者人际生态理论,将人际关系分成了四套依次层叠的环境系统。这些系统彼此之间又相互影响。该理论由尤里·
  • 法兰西第四共和国法兰西第四共和国为1946年到1958年的法国共和政府。这段时期,法国实施议会制,该宪制与第二次世界大战前的第三共和相似,但也遭遇到相似的问题,比如内阁短暂及频繁更换,政策计划面
  • 博奈尔岛面积以下资讯是以2015年估计家用电源国家领袖立国历史博奈尔(荷兰语:Bonaire)是加勒比海中一岛屿,现为荷兰的公共实体(英语:Public body (Netherlands)),与附近的荷兰王国构成国阿鲁
  • 上海有机化学研究所中国科学院上海有机化学研究所(英语:Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences),简称上海有机所,是中华人民共和国一家主要关注有机化学的专业研究
  • 1818年1818年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月
  • 氨基甲酸铵442 mbar(45°C)氨基甲酸铵是一种白色的晶体,分子式为 NH2COONH4,在35°C开始分解,并会在59°C时完全分解成氨气和二氧化碳。 氨基甲酸铵是化学工业上尿素生产过程的生成物,加热
  • 朗德海花园场景《朗德海花园场景》(法语:Une scène au jardin de Roundhay),是路易斯·普林斯在1888年10月拍摄的短片,并为世界上已知最早的短片。本片约2秒长,被《吉尼斯世界纪录大全》收录为
  • Peuerbach波伊尔巴赫(德语:Peuerbach),奥地利上奥地利州格里斯基兴县的一个市镇,位于豪斯鲁克山(Hausruck)的390米高处。南北长5.3公里,东西宽5.4公里,整个面积为11公里。丛林面积约占13.6%,耕
  • 自强运动洋务运动,又称自强运动、同治维新,是大清后期时,洋务派官员以“师夷长技以制夷”为基础,在全国展开之工业运动,口号和目标先后分别是“师夷长技以自强”和“师夷长技以求富”。此