首页 >
多胞形
✍ dations ◷ 2025-04-04 11:13:15 #多胞形
多胞形是一类由平的边界构成的几何结构。多胞形可以存在于任意维中。多边形为二维多胞形,多面体为三维多胞形,也可以延伸到三维以上的空间,如多胞体即为四维多胞形。当提到n度空间下的多胞形时,常会用n-多胞形的名称来表示,因此多边形可称为2-多胞形,多面体可称为3-多胞形,多胞体即为4-多胞形。多胞体的英文polytope是由数学家Hoppe创造,其原文为德文,后来才由艾丽西亚·布尔·斯托特(英语:Alicia Boole Stott)翻译为英文。简单多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时,简单多边形是指自身元素中没有互相相交情况的多边形。而在讨论其他维度的立体时,简单多胞形代表与每个顶点相邻之边或面数不会超过其维数的多胞形。复杂多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时(尤其是四边形),复杂多边形(讨论四边形时称复杂四边形)是指自身元素中有互相相交情况的多边形,同时也可以推广到多胞形的情况,即指自身元素中有互相相交情况的多胞形。在电脑图学中,也可以用来指非简单的几何形状。此外,复杂多胞形在英语中称为Complex Polytope,其亦可以代表位于复数(Complex Number)空间的复多胞形。凸多胞形是最简单的多胞形,并且存在有几种不同的概念性定义。例如凸多胞形有时被定义为一组半空间的交集,这个个定义下并不强制多胞形是有界的也不强制多胞形是有限的,其中有界的多胞形意味着存在一个能涵盖整个多胞形且半径是有限的球体或超球体。若其为凸集且符合有界和有限的特性则可以称为严格凸多胞形。在线性规划中通常会利用这种方式来定义多胞形正多胞形是对称性最高的一种多胞形,在这种多胞形中,各种同维元素或同结构元素组皆可在其对称性上传递,甚至其对称性也能在标记(包含所有维度元素组)上传递,因此正多胞形的对偶多胞形也是一种正多胞形。星形多胞形通常是指一系列的非凸多胞形,其中包括了一些正多胞形。由于并非所有流形都是有限的,因此若将多胞体理解为在一个流形中由胞结构组成的空间填充,则可以将之扩展到无穷流形中。平面密铺、空间堆砌和双曲镶嵌多可以算是这类多胞形。这种解合结构因为有无限多个维面,因此有时会被称为无限胞体实多胞形是指所有顶点皆位于
R
n
{displaystyle mathbb {R} ^{n}}
空间的多胞形,通常会和复多胞形进行比较,例如实多胞形可以定义内部而复多胞形无法。另外,在抽象几何学(英语:Abstract polytope)中,实多胞形也可以表达与抽象多胞形相对的概念。实多胞形是指所有顶点皆位于
C
n
{displaystyle mathbb {C} ^{n}}
复希尔伯特空间的多胞形,可以视为实数空间中的多胞形在复数空间的推广。而复正多胞形更适合被视为一种排布结构。在几何中,四元多胞形是指位于四元数空间的多胞形。其可以视为是实数空间中的多胞形在四元数空间的推广。其与复数空间类似,点不具有序性,因此没有“位于...之间”的相互关系,因此一个四元数空间多胞形可以被理解为一组点、线和面等的排布关系,其中,点维多条线的连接点、线连接了多个面。由于四元数的乘法不具有交换率,因此必须透过标量与向量相乘来构建乘法系统,通常会使用左乘法。多胞形通常可以定义于希尔伯特空间中,如复多胞形(Complex polytope)、四元多胞形(Quaternionic polytope)或八元多胞形(Octonionic Polytope)等,不过在一些复杂的空间结构的多胞形,如八元多胞形的理论尚未被有系统的探讨及解决。抽象多胞形是一种纯粹只考虑多胞形各元素间的组合特性,将多胞形从其包含的空间几何关系分离出来的一类多胞形。这允许将多胞形各元素的定义扩展到包括一些位于难以在直观下定义之空间的物件,例如四维正十一胞体。抽象多胞形是遵守某些规则之元素的偏序集合,并且是一个纯粹的代数结构,其发展的目的是为了避免或解决一些不同类型的几何结构难以在一致的数学框架下协调的问题。拓朴多胞形是一个可以分解为与凸多胞形拓朴等价的形状、且可以规则方式分解为相互连接的形状的拓朴空间
相关
- 酸碱平衡酸度系数(英语:Acid dissociation constant,又名酸解离常数,代号Ka、pKa、pKa值),在化学及生物化学中,是指一个特定的平衡常数,以代表一种酸解离氢离子的能力。该平衡状况是指由一种
- 裂殖体顶复门物种的生命周期包括以下各个阶段:作为一组细胞内寄生虫,顶复门的生命周期阶段让它们透过演化去适应它们所暴露于的各种复杂的环境下生存。簇虫亚纲的身细胞内都有营养体
- 米西尔逊-斯塔尔实验梅瑟生-史达实验(Meselson-Stahl experiment)是马修·梅瑟生(Matthew Meselson)与富兰克林·史达(Franklin Stahl)在1958年所作的实验,证明了DNA复制的半保留性质。氮是DNA的重要组
- Google图书Google图书(英语:Google Books)是一个由Google研发的搜索工具,它可以自Google所扫描、经由光学字符识别(OCR)、存储的数字化数据库中搜索数据。此服务于2004年10月在法兰克福书展
- 大野干大野干(日语:大野乾/おおの すすむ Ōno Susumu,1928年2月1日-2000年1月13日)是一位出生于韩国,旅居于美国的日本遗传学家与演化生物学家,他提出了基因重复的概念,并研究X染色体上的
- 璷妃璷妃(1841年-1895年),叶赫那拉氏,满洲正白旗主事全文之女。清朝咸丰帝之妃。道光二十一年(1841年)二月十日出生。咸丰初年,通过内务府选秀成为宫女,与禧妃、庆妃、吉妃被俗称为四春娘
- 立地暗沙立地暗沙是一座位于南海的暗沙,为南沙群岛的一部分,中华人民共和国、中华民国声称对其拥有主权。立地暗沙是中国领土的最南端,而不是更广为人知的曾母暗沙。周围水深25-27浔(45
- span class=nowrapCusub3/subP/span磷化亚铜是铜和磷的化合物,由铜磷化产生,通常状态下为黄灰色固体,具有很脆的晶体结构,不与水反应。磷化亚铜在铜合金中受到一定关注,磷青铜便是一个例子。这是一个很好的铜脱氧剂
- Trematoda见内文吸虫(学名:Trematoda)是寄生虫的一种,为扁形动物门吸虫纲动物的总称,也称为瓜仁虫。一些吸虫也被称为二口虫(拉丁语:Distoma)。其名由来是因为它的口吸盘和腹吸盘都被认为是口
- 冰毒 (消歧义)冰毒可以表示: