首页 >
多胞形
✍ dations ◷ 2025-05-17 08:10:35 #多胞形
多胞形是一类由平的边界构成的几何结构。多胞形可以存在于任意维中。多边形为二维多胞形,多面体为三维多胞形,也可以延伸到三维以上的空间,如多胞体即为四维多胞形。当提到n度空间下的多胞形时,常会用n-多胞形的名称来表示,因此多边形可称为2-多胞形,多面体可称为3-多胞形,多胞体即为4-多胞形。多胞体的英文polytope是由数学家Hoppe创造,其原文为德文,后来才由艾丽西亚·布尔·斯托特(英语:Alicia Boole Stott)翻译为英文。简单多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时,简单多边形是指自身元素中没有互相相交情况的多边形。而在讨论其他维度的立体时,简单多胞形代表与每个顶点相邻之边或面数不会超过其维数的多胞形。复杂多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时(尤其是四边形),复杂多边形(讨论四边形时称复杂四边形)是指自身元素中有互相相交情况的多边形,同时也可以推广到多胞形的情况,即指自身元素中有互相相交情况的多胞形。在电脑图学中,也可以用来指非简单的几何形状。此外,复杂多胞形在英语中称为Complex Polytope,其亦可以代表位于复数(Complex Number)空间的复多胞形。凸多胞形是最简单的多胞形,并且存在有几种不同的概念性定义。例如凸多胞形有时被定义为一组半空间的交集,这个个定义下并不强制多胞形是有界的也不强制多胞形是有限的,其中有界的多胞形意味着存在一个能涵盖整个多胞形且半径是有限的球体或超球体。若其为凸集且符合有界和有限的特性则可以称为严格凸多胞形。在线性规划中通常会利用这种方式来定义多胞形正多胞形是对称性最高的一种多胞形,在这种多胞形中,各种同维元素或同结构元素组皆可在其对称性上传递,甚至其对称性也能在标记(包含所有维度元素组)上传递,因此正多胞形的对偶多胞形也是一种正多胞形。星形多胞形通常是指一系列的非凸多胞形,其中包括了一些正多胞形。由于并非所有流形都是有限的,因此若将多胞体理解为在一个流形中由胞结构组成的空间填充,则可以将之扩展到无穷流形中。平面密铺、空间堆砌和双曲镶嵌多可以算是这类多胞形。这种解合结构因为有无限多个维面,因此有时会被称为无限胞体实多胞形是指所有顶点皆位于
R
n
{displaystyle mathbb {R} ^{n}}
空间的多胞形,通常会和复多胞形进行比较,例如实多胞形可以定义内部而复多胞形无法。另外,在抽象几何学(英语:Abstract polytope)中,实多胞形也可以表达与抽象多胞形相对的概念。实多胞形是指所有顶点皆位于
C
n
{displaystyle mathbb {C} ^{n}}
复希尔伯特空间的多胞形,可以视为实数空间中的多胞形在复数空间的推广。而复正多胞形更适合被视为一种排布结构。在几何中,四元多胞形是指位于四元数空间的多胞形。其可以视为是实数空间中的多胞形在四元数空间的推广。其与复数空间类似,点不具有序性,因此没有“位于...之间”的相互关系,因此一个四元数空间多胞形可以被理解为一组点、线和面等的排布关系,其中,点维多条线的连接点、线连接了多个面。由于四元数的乘法不具有交换率,因此必须透过标量与向量相乘来构建乘法系统,通常会使用左乘法。多胞形通常可以定义于希尔伯特空间中,如复多胞形(Complex polytope)、四元多胞形(Quaternionic polytope)或八元多胞形(Octonionic Polytope)等,不过在一些复杂的空间结构的多胞形,如八元多胞形的理论尚未被有系统的探讨及解决。抽象多胞形是一种纯粹只考虑多胞形各元素间的组合特性,将多胞形从其包含的空间几何关系分离出来的一类多胞形。这允许将多胞形各元素的定义扩展到包括一些位于难以在直观下定义之空间的物件,例如四维正十一胞体。抽象多胞形是遵守某些规则之元素的偏序集合,并且是一个纯粹的代数结构,其发展的目的是为了避免或解决一些不同类型的几何结构难以在一致的数学框架下协调的问题。拓朴多胞形是一个可以分解为与凸多胞形拓朴等价的形状、且可以规则方式分解为相互连接的形状的拓朴空间
相关
- 迷因体质人类学 文化人类学 语言人类学 分子人类学 社会人类学 考古学应用人类学 民族志 参与观察 文化相对论文化 • 社会 史前史 • 人类演化 亲属 婚姻 • 家庭 物质文化 种
- 最近共同祖先最近共同祖先(英语:Most recent common ancestor,缩写 MRCA)是演化生物学中表示一系列不同的物种拥有共同起源的那个最近的祖先。这一概念经常应用于人类的宗谱。人类的最近共同
- 糸糸部,为汉字索引中的部首之一,康熙字典214个部首中的第一百二十个(六划的则为第三个)。俗称绞丝旁、绞丝底、绕丝边等。就繁体和简体中文中,糸部归于六划部首。糸部通常从左、下
- 吸口虫纲吸口虫纲(学名:Myzostomida)是环节动物门下的一个纲,生活于海洋。物种数量较少,其身体扁平,呈圆形状,腹部有数对刚毛,因此有学者将之列为多毛纲下的一个目。从外表看不出吸口虫有分
- 固有免疫先天免疫系统(英语:Innate immunity)又称为非特异性免疫、固有免疫、非专一性防御,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异
- 自由软件运动自由软件运动(英语:free software movement或free/open source software movement,简称FSM或FOSSM)是一个推广用户有使用、复制、研究、修改和分发软件等权利的社会运动。接近和
- 松山慈祐宫坐标:25°03′05″N 121°34′40″E / 25.051264°N 121.577661°E / 25.051264; 121.577661松山慈祐宫,旧称锡口妈祖庙,是位于台湾台北市松山区慈祐里、饶河街夜市旁的妈祖庙,
- 1064年
- 杜富尔峰杜富尔峰(德语:Dufourspitze;法语:pointe Dufour;意大利语:Punta Dufour)位于瑞士南部瓦莱州境内,海拔4633.9米,为瑞士最高点,也是阿尔卑斯山脉第二高峰。杜富尔峰和周围几座海拔超过4
- 肉食亚目见内文肉食亚目(学名:Adephaga)是昆虫纲鞘翅目的一个亚目。肉食亚目的特色是第一可见腹节之腹板多为后足基节窝所分开,后翅近中部处具1或2横脉(通常为m-cu横脉形成oblong cell),前