多胞形

✍ dations ◷ 2025-04-26 12:16:25 #多胞形
多胞形是一类由平的边界构成的几何结构。多胞形可以存在于任意维中。多边形为二维多胞形,多面体为三维多胞形,也可以延伸到三维以上的空间,如多胞体即为四维多胞形。当提到n度空间下的多胞形时,常会用n-多胞形的名称来表示,因此多边形可称为2-多胞形,多面体可称为3-多胞形,多胞体即为4-多胞形。多胞体的英文polytope是由数学家Hoppe创造,其原文为德文,后来才由艾丽西亚·布尔·斯托特(英语:Alicia Boole Stott)翻译为英文。简单多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时,简单多边形是指自身元素中没有互相相交情况的多边形。而在讨论其他维度的立体时,简单多胞形代表与每个顶点相邻之边或面数不会超过其维数的多胞形。复杂多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时(尤其是四边形),复杂多边形(讨论四边形时称复杂四边形)是指自身元素中有互相相交情况的多边形,同时也可以推广到多胞形的情况,即指自身元素中有互相相交情况的多胞形。在电脑图学中,也可以用来指非简单的几何形状。此外,复杂多胞形在英语中称为Complex Polytope,其亦可以代表位于复数(Complex Number)空间的复多胞形。凸多胞形是最简单的多胞形,并且存在有几种不同的概念性定义。例如凸多胞形有时被定义为一组半空间的交集,这个个定义下并不强制多胞形是有界的也不强制多胞形是有限的,其中有界的多胞形意味着存在一个能涵盖整个多胞形且半径是有限的球体或超球体。若其为凸集且符合有界和有限的特性则可以称为严格凸多胞形。在线性规划中通常会利用这种方式来定义多胞形正多胞形是对称性最高的一种多胞形,在这种多胞形中,各种同维元素或同结构元素组皆可在其对称性上传递,甚至其对称性也能在标记(包含所有维度元素组)上传递,因此正多胞形的对偶多胞形也是一种正多胞形。星形多胞形通常是指一系列的非凸多胞形,其中包括了一些正多胞形。由于并非所有流形都是有限的,因此若将多胞体理解为在一个流形中由胞结构组成的空间填充,则可以将之扩展到无穷流形中。平面密铺、空间堆砌和双曲镶嵌多可以算是这类多胞形。这种解合结构因为有无限多个维面,因此有时会被称为无限胞体实多胞形是指所有顶点皆位于 R n {displaystyle mathbb {R} ^{n}} 空间的多胞形,通常会和复多胞形进行比较,例如实多胞形可以定义内部而复多胞形无法。另外,在抽象几何学(英语:Abstract polytope)中,实多胞形也可以表达与抽象多胞形相对的概念。实多胞形是指所有顶点皆位于 C n {displaystyle mathbb {C} ^{n}} 复希尔伯特空间的多胞形,可以视为实数空间中的多胞形在复数空间的推广。而复正多胞形更适合被视为一种排布结构。在几何中,四元多胞形是指位于四元数空间的多胞形。其可以视为是实数空间中的多胞形在四元数空间的推广。其与复数空间类似,点不具有序性,因此没有“位于...之间”的相互关系,因此一个四元数空间多胞形可以被理解为一组点、线和面等的排布关系,其中,点维多条线的连接点、线连接了多个面。由于四元数的乘法不具有交换率,因此必须透过标量与向量相乘来构建乘法系统,通常会使用左乘法。多胞形通常可以定义于希尔伯特空间中,如复多胞形(Complex polytope)、四元多胞形(Quaternionic polytope)或八元多胞形(Octonionic Polytope)等,不过在一些复杂的空间结构的多胞形,如八元多胞形的理论尚未被有系统的探讨及解决。抽象多胞形是一种纯粹只考虑多胞形各元素间的组合特性,将多胞形从其包含的空间几何关系分离出来的一类多胞形。这允许将多胞形各元素的定义扩展到包括一些位于难以在直观下定义之空间的物件,例如四维正十一胞体。抽象多胞形是遵守某些规则之元素的偏序集合,并且是一个纯粹的代数结构,其发展的目的是为了避免或解决一些不同类型的几何结构难以在一致的数学框架下协调的问题。拓朴多胞形是一个可以分解为与凸多胞形拓朴等价的形状、且可以规则方式分解为相互连接的形状的拓朴空间

相关

  • 实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • 坩埚坩埚(英语:Crucible)是实验室中使用的一种杯状器皿,最早使用于炼金术实验。用途是盛液体或固体进行高温加热。另外,冶金学中用来融化金属的容器也被称作坩埚。坩埚的材料要求耐热
  • 线粒体内膜线粒体内膜(英语:inner mitochondrial membrane,缩写为“IMM”)是位于线粒体外膜内侧,包裹着线粒体基质的一层单位膜。线粒体内膜比外膜稍薄,厚约5-6nm。线粒体内膜中蛋白质与磷脂
  • Wiki引擎Wiki引擎,或称为Wiki软件,是指用来架设Wiki的软件。广义来说,即是一种软件能作为网络共笔,供网民自行编辑,并最终集合成完整的数据库。狭义来说,即是能达成维基百科样式的软件。由
  • 麦什德马什哈德(波斯语:مشهد‎,转写:Mašhad)是伊朗第二大城市,亦是伊斯兰教什叶派的圣城之一。它位于德黑兰以东850公里,是礼萨呼罗珊省的首府。马什哈德建于公元823年。在波斯语,马
  • 托斯登·威塞尔托斯坦·尼尔斯·威泽尔(瑞典语:Torsten Nils Wiesel,1924年6月3日-),瑞典神经科学家,与大卫·休伯尔(David H. Hubel)由于对视觉系统的讯息处理过程之研究,而和研究左右脑半球的罗杰
  • 唇齿唇齿音(古汉语:轻唇音)为发音部位的一种,借由唇与齿的咬合而发出的辅音(子音)。当符号成对出现时,左边的是清音,右边的是浊音。阴影区域表示被认为是不可能的发音。
  • 白术散白术散,出自《伤寒杂病论》。妊娠,身有寒湿,或腹痛,或心烦心痛,不能饮食,其胎跃跃动者,宜养之。
  • 分裂国家罪分裂国家罪,是中华人民共和国的一项刑法罪名,是指组织、策划、实施分裂国家、破坏国家统一,或者与境外的机构、组织、个人相勾结,组织、策划、实施分裂国家、破坏国家统一的行为
  • 玛米图其他传说在美索不达米亚神话中,玛米图(Mamitu)是决定命运的羊头女神,主要决定新儿的命运。她也被奉为誓言女神,对违背誓言者进行惩罚。后来成为命运女神和冥界的判官,跟阿努纳奇