多胞形

✍ dations ◷ 2025-12-05 17:51:46 #多胞形
多胞形是一类由平的边界构成的几何结构。多胞形可以存在于任意维中。多边形为二维多胞形,多面体为三维多胞形,也可以延伸到三维以上的空间,如多胞体即为四维多胞形。当提到n度空间下的多胞形时,常会用n-多胞形的名称来表示,因此多边形可称为2-多胞形,多面体可称为3-多胞形,多胞体即为4-多胞形。多胞体的英文polytope是由数学家Hoppe创造,其原文为德文,后来才由艾丽西亚·布尔·斯托特(英语:Alicia Boole Stott)翻译为英文。简单多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时,简单多边形是指自身元素中没有互相相交情况的多边形。而在讨论其他维度的立体时,简单多胞形代表与每个顶点相邻之边或面数不会超过其维数的多胞形。复杂多胞形在不同的情况下有不同的定义,例如在讨论二维多边形时(尤其是四边形),复杂多边形(讨论四边形时称复杂四边形)是指自身元素中有互相相交情况的多边形,同时也可以推广到多胞形的情况,即指自身元素中有互相相交情况的多胞形。在电脑图学中,也可以用来指非简单的几何形状。此外,复杂多胞形在英语中称为Complex Polytope,其亦可以代表位于复数(Complex Number)空间的复多胞形。凸多胞形是最简单的多胞形,并且存在有几种不同的概念性定义。例如凸多胞形有时被定义为一组半空间的交集,这个个定义下并不强制多胞形是有界的也不强制多胞形是有限的,其中有界的多胞形意味着存在一个能涵盖整个多胞形且半径是有限的球体或超球体。若其为凸集且符合有界和有限的特性则可以称为严格凸多胞形。在线性规划中通常会利用这种方式来定义多胞形正多胞形是对称性最高的一种多胞形,在这种多胞形中,各种同维元素或同结构元素组皆可在其对称性上传递,甚至其对称性也能在标记(包含所有维度元素组)上传递,因此正多胞形的对偶多胞形也是一种正多胞形。星形多胞形通常是指一系列的非凸多胞形,其中包括了一些正多胞形。由于并非所有流形都是有限的,因此若将多胞体理解为在一个流形中由胞结构组成的空间填充,则可以将之扩展到无穷流形中。平面密铺、空间堆砌和双曲镶嵌多可以算是这类多胞形。这种解合结构因为有无限多个维面,因此有时会被称为无限胞体实多胞形是指所有顶点皆位于 R n {displaystyle mathbb {R} ^{n}} 空间的多胞形,通常会和复多胞形进行比较,例如实多胞形可以定义内部而复多胞形无法。另外,在抽象几何学(英语:Abstract polytope)中,实多胞形也可以表达与抽象多胞形相对的概念。实多胞形是指所有顶点皆位于 C n {displaystyle mathbb {C} ^{n}} 复希尔伯特空间的多胞形,可以视为实数空间中的多胞形在复数空间的推广。而复正多胞形更适合被视为一种排布结构。在几何中,四元多胞形是指位于四元数空间的多胞形。其可以视为是实数空间中的多胞形在四元数空间的推广。其与复数空间类似,点不具有序性,因此没有“位于...之间”的相互关系,因此一个四元数空间多胞形可以被理解为一组点、线和面等的排布关系,其中,点维多条线的连接点、线连接了多个面。由于四元数的乘法不具有交换率,因此必须透过标量与向量相乘来构建乘法系统,通常会使用左乘法。多胞形通常可以定义于希尔伯特空间中,如复多胞形(Complex polytope)、四元多胞形(Quaternionic polytope)或八元多胞形(Octonionic Polytope)等,不过在一些复杂的空间结构的多胞形,如八元多胞形的理论尚未被有系统的探讨及解决。抽象多胞形是一种纯粹只考虑多胞形各元素间的组合特性,将多胞形从其包含的空间几何关系分离出来的一类多胞形。这允许将多胞形各元素的定义扩展到包括一些位于难以在直观下定义之空间的物件,例如四维正十一胞体。抽象多胞形是遵守某些规则之元素的偏序集合,并且是一个纯粹的代数结构,其发展的目的是为了避免或解决一些不同类型的几何结构难以在一致的数学框架下协调的问题。拓朴多胞形是一个可以分解为与凸多胞形拓朴等价的形状、且可以规则方式分解为相互连接的形状的拓朴空间

相关

  • 本能本能或称先天行为,是指一个生物体趋向于某一特定行为的内在倾向。本能的最简单例子就是钥匙刺激(FAP),指的是对于一种可清晰界定的刺激,生物体会回应以一系列固定的动作,时间长度
  • 质膜细胞膜,又称原生质膜(英语:cell membrane 或 plasma membrane 或 cytoplasmic membrane),为细胞结构中分隔细胞内、外不同介质和组成成分的界面。原生质膜普遍认为由磷脂质双层分
  • 普法战争巴登  巴伐利亚王国 符腾堡909,9511,200,000756,285116,696普法战争,在法国称1870年法德战争(法语:Guerre franco-allemande de 1870),在德国称德法战争(德语:Deutsch-Französis
  • 中苏互不侵犯条约中苏互不侵犯条约是指中华民国与苏联于1937年8月20日在南京签订的条约,规定:“倘缔约国之一方受一个或数个第三国侵略时,彼缔约国约定,在冲突全部时间内,对该第三国不得直接或间
  • 夏立言夏立言(1950年12月24日-),中华民国外交官,国立政治大学外交系、英国牛津大学法律系、伦敦大学法律系三硕士学位,曾任行政院大陆委员会主任委员、国防部军政副部长、驻印尼代表、外
  • 外阴结核病外阴结核病(tuberculosis of vulva),是一种非常罕见的女性生殖道的结核病,其主要病发于阴唇和外阴前庭。病人常带有或没有结核病的中毒症状,如低热、盗汗、乏力、消瘦等,病变发展
  • 茉莉花茉莉花(学名:Jasminum sambac,梵文:Mallika)为木犀科素馨属的植物,是一种高约1至3米的灌木。茉莉花的学名 sambac 从梵语 champaka 而来,原指木兰科含笑属的黄玉兰(Michelia champac
  • 红金红金傣语是元江(红河)和金沙江流域的傣族所说的语言,属于侗台语系台语支,使用人口达13万6千人。这种语言分布较为分散,受到相邻的汉语和彝语支语言影响,与台语支西南组的其他语言
  • 亚当氏剂Diphenylaminechlorarsine亚当氏毒气(Adamsite)或二苯胺氯胂(diphenylaminechlorarsine),简称DM,是一种有机化合物,可作防暴用途。DM属于化学战剂,被认为是呕吐战剂或者喷嚏性毒气。
  • 舟山舟山市(吴语拼音: Cieusae Zy)是中华人民共和国浙江省下辖的地级市,位于浙江省东北部,其行政区域范围为整个舟山群岛。市境西北隔杭州湾与上海市、嘉兴市相望,西南隔海与宁波市相