棱台

✍ dations ◷ 2024-12-23 01:47:57 #棱台
棱台是几何学中研究的一类多面体,指一个棱锥被平行于它的底面的一个平面所截后,截面与底面之间的几何形体。截面也称为棱台的上底面,原来棱锥的底面称为下底面。随着棱锥形状不同,棱台的称呼也不相同,依底面多边形而定,例如底面是正方形的棱台称为方棱台,底面为三角形的棱台称为三棱台,底面为五边形的棱台称为五棱台等等。棱台是平截头体的一类,也是更广义的拟柱体的一种。从棱锥的定义可以推知,一个以.mw-parser-output .serif{font-family:Times,serif}n边形为底面的棱台,一共有2n个顶点,n+2个面以及3n条边。棱锥的对偶多面体是双锥。棱锥的对称性取决于原来棱锥。如果原来的棱锥是正棱锥,那么棱台和正多边形有相同的对称结构(同构的对称群)。棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设 h {displaystyle h} 为棱台的高, S u {displaystyle S_{u}} 和 S d {displaystyle S_{d}} 为棱台的上下底面积, V {displaystyle V} 为棱台的体积。由于棱台是由一个平面截去棱锥的一部分(也就是和原来棱锥相似的一个小棱锥)得到,所以计算体积的时候,可以先算出原来棱锥的体积,再减去和它相似的小棱锥的体积。棱锥被平行于底面的平面所截时,截面的面积与底面面积的比,等于小棱锥和原棱锥的高的比的平方。假设原棱锥的高是 H {displaystyle H} ,那幺小棱锥的高是 H − h {displaystyle H-h} 。也就是说:所以:棱台的体积等于原棱锥体积减去小棱锥的体积:对于正棱锥,假设它的底面是正n边形,边长分别为a和b,高是h,那么底面积是: S u = n a 2 4 cot ⁡ π n , S u = n b 2 4 cot ⁡ π n . {displaystyle S_{u}={frac {na^{2}}{4}}cot {frac {pi }{n}},quad S_{u}={frac {nb^{2}}{4}}cot {frac {pi }{n}}.} 所以它的体积是:棱台的侧面展开图是由各个梯形侧面组成的,展开图的面积,就是各个侧面的面积之和,也就是原棱锥的侧面积减去小棱锥的侧面积Sc棱台的表面积等于棱台的侧面积Sc加上底面积S。假设各个梯形侧面的高是hi,底边的长度是ai和bi,那么棱锥的侧面积:三角柱 · 四角柱 · 五角柱 · 六角柱 · 七角柱 · 八角柱 · 九角柱 · ... · 无限角柱(双曲)三角反柱 · 四角反柱 · 五角反柱 · 六角反柱 · 七角反柱 · 八角反柱 · ... · 无限角反柱三角锥柱 · 四角锥柱 · 五角锥柱 · 六角锥柱 · 七角锥柱 · 八角锥柱 · ... · 无限角锥柱

相关

  • 申克氏孢子丝菌申克氏孢子丝菌(学名:Sporothrix schenckii)是孢子丝菌属的一种真菌,分布于全球,常见于土壤与腐烂的植物组织中。本种真菌可感染人类,造成称为孢子丝菌症(玫瑰园丁症)的皮下感染,感染
  • 钍燃料发电钍元素能否取代铀、钚(钚)等核燃料作发电用途值得关注。叶恭平博士支持钍燃料发电因为钍的蕴藏量较多、燃料装造较简易、产生较少核废料、不易制成武器,而且钍裂变发电较有效率
  • 生态演替演替(英语:succession)是指在群落发展变化过程中,由低级到高级,由简单到复杂,一个阶段接着一个阶段,一个群落代替另一个群落的自然演变现象。裸地的存在是群落形成的最初条件和场所
  • 残疾人权利公约《残疾人权利公约》(英语:Convention on the Rights of Persons with Disabilities, 简称CRPD),是联合国于2006年12月13日通过的有关保护残疾人人权的国际公约。公约的草案于200
  • 欧盟国家欧洲联盟成员国是根据《欧洲联盟条约》,自愿加入欧洲联盟的国家。和一般的国际组织不同,作为欧盟的成员国,要遵守共同制定的统一法律;但和联邦制的国家(如美国)又不同,每个成员国有
  • 盐埕盐埕可以指:
  • 企业家企业家(法语、英语 Entrepreneur,德语 Unternehmer)是自己创立并运营企业的人。企业家会承担起整个企业的责任,为企业长远利益着想,不轻易退休或转职。接手前人所拥有的事业,作法
  • 第二次伦敦海军条约第二次伦敦海军条约(Second London Naval Treaty)是1936年3月25日第二次伦敦海军裁军会议(Second London Naval Disarmament Conference)举行后,由法、英与美三国政府所签订的军
  • 苏联攻势波罗的海 – 黑海 – 北极 – (跳马 – PQ-17船团 – 仙境)1941年巴巴罗萨 – (比亚韦斯托克及明斯克 – 斯摩棱斯克 – 乌曼 – 列宁格勒 – 第一次基辅 – 塞瓦斯托波尔围
  • 思科系统思科系统(英语:Cisco Systems, Inc.;NASDAQ:CSCO,港交所:4333)是一间跨国际综合技术企业,总部设于加州硅谷。思科开发、制作和售卖网络硬件(英语:Networking hardware)、软件、通信设备