最大似然法

✍ dations ◷ 2025-08-02 21:46:17 #最大似然法
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称极大似然估计、最大概似估计,是用来估计一个概率模型的参数的一种方法。下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。给定一个概率分布 D {displaystyle D} ,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 f D {displaystyle f_{D}} ,以及一个分布参数 θ {displaystyle theta } ,我们可以从这个分布中抽出一个具有 n {displaystyle n} 个值的采样 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,利用 f D {displaystyle f_{D}} 计算出其似然函数:若 D {displaystyle D} 是离散分布, f θ {displaystyle f_{theta }} 即是在参数为 θ {displaystyle theta } 时观测到这一采样的概率。若其是连续分布, f θ {displaystyle f_{theta }} 则为 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} 联合分布的概率密度函数在观测值处的取值。一旦我们获得 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,我们就能求得一个关于 θ {displaystyle theta } 的估计。最大似然估计会寻找关于 θ {displaystyle theta } 的最可能的值(即,在所有可能的 θ {displaystyle theta } 取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在 θ {displaystyle theta } 的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的 θ ^ {displaystyle {widehat {theta }}} 值即称为 θ {displaystyle theta } 的最大似然估计。由定义,最大似然估计是样本的函数。考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样 x 1 = H , x 2 = T , … , x 80 = T {displaystyle x_{1}={mbox{H}},x_{2}={mbox{T}},ldots ,x_{80}={mbox{T}}} 并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为 p {displaystyle p} ,抛出一个反面的概率记为 1 − p {displaystyle 1-p} (因此,这里的 p {displaystyle p} 即相当于上边的 θ {displaystyle theta } )。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为 p = 1 / 3 {displaystyle p=1/3} , p = 1 / 2 {displaystyle p=1/2} , p = 2 / 3 {displaystyle p=2/3} .这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:我们可以看到当 p ^ = 2 / 3 {displaystyle {widehat {p}}=2/3} 时,似然函数取得最大值。 显然地,这硬币的公平性和那种抛出后正面的几率是2/3的硬币是最接近的。这就是 p {displaystyle p} 的最大似然估计。现在假设例子1中的盒子中有无数个硬币,对于 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} 中的任何一个 p {displaystyle p} , 都有一个抛出正面概率为 p {displaystyle p} 的硬币对应,我们来求其似然函数的最大值:其中 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} . 我们可以使用微分法来求极值。方程两边同时对 p {displaystyle p} 取微分,并使其为零。其解为 p = 0 {displaystyle p=0} , p = 1 {displaystyle p=1} ,以及 p = 49 / 80 {displaystyle p=49/80} .使可能性最大的解显然是 p = 49 / 80 {displaystyle p=49/80} (因为 p = 0 {displaystyle p=0} 和 p = 1 {displaystyle p=1} 这两个解会使可能性为零)。因此我们说最大似然估计值为 p ^ = 49 / 80 {displaystyle {widehat {p}}=49/80} .这个结果很容易一般化。只需要用一个字母 t {displaystyle t} 代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母 n {displaystyle n} 代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:对于任何成功次数为 t {displaystyle t} ,试验总数为 n {displaystyle n} 的伯努利试验。最常见的连续概率分布是正态分布,其概率密度函数如下:现在有 n {displaystyle n} 个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其 n {displaystyle n} 个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:或:这个分布有两个参数: μ , σ 2 {displaystyle mu ,sigma ^{2}} .有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性 L ( μ , σ ) = f ( x 1 , , … , x n ∣ μ , σ 2 ) {displaystyle {mbox{L}}(mu ,sigma )=f(x_{1},,ldots ,x_{n}mid mu ,sigma ^{2})} 在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} .最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:这个方程的解是 μ ^ = x ¯ = ∑ i = 1 n x i / n {displaystyle {widehat {mu }}={bar {x}}=sum _{i=1}^{n}x_{i}/n} .这的确是这个函数的最大值,因为它是 μ {displaystyle mu } 里头惟一的一阶导数等于零的点并且二阶导数严格小于零。同理,我们对 σ {displaystyle sigma } 求导,并使其为零。这个方程的解是 σ ^ 2 = ∑ i = 1 n ( x i − μ ^ ) 2 / n {displaystyle {widehat {sigma }}^{2}=sum _{i=1}^{n}(x_{i}-{widehat {mu }})^{2}/n} .因此,其关于 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} 的最大似然估计为:如果 θ ^ {displaystyle {hat {theta }}} 是 θ {displaystyle theta } 的一个最大似然估计,那么 α = g ( θ ) {displaystyle alpha =g(theta )} 的最大似然估计是 α ^ = g ( θ ^ ) {displaystyle {hat {alpha }}=g({hat {theta }})} 。函数g无需是一个双射。最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。 对于独立的观察来说,最大似然估计函数经常趋于正态分布。最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1到n的n张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有 ( n + 1 ) / 2 {displaystyle (n+1)/2} .为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。最大似然估计最早是由罗纳德·费雪在1912年至1922年间推荐、分析并大范围推广的。(虽然以前高斯、拉普拉斯、T. N. Thiele和F. Y. 埃奇沃思也使用过)。 许多作者都提供了最大似然估计发展的回顾。大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。

相关

  • 厌氧发酵发酵作用(英语:fermentation)有时也写作酦酵,其定义由使用场合的不同而不同。通常所说的发酵,多是指生物体对于有机物的某种分解过程。发酵是人类较早接触的一种生物化学反应,如今
  • 库施特语族库希特语族(Cushitic)又称作古实语族,是亚非语系(闪含语系)之下的语族之一,分布在埃塞俄比亚、苏丹、索马里、肯尼亚和坦桑尼亚。可以细分为约四个语支:“库希特”这名字源自《圣经
  • 微芯片集成电路(英语:integrated circuit,缩写作 IC;德语:integrierter Schaltkreis),或称微电路(microcircuit)、微芯片(microchip)、芯片(chip)在电子学中是一种将电路(主要包括半导体设备,也包
  • 玄武岩玄武岩(英语:basalt)是一种细粒致密、外观呈黑色的火成岩,由基性岩浆喷发凝结而成,主要成分是硅铝酸钠或硅铝酸钙,二氧化硅的含量大约是45-52%,还含有较高的氧化铁和氧化镁。由于喷
  • 黄藻黄藻(Xanthophyceae)是一类属于不等鞭毛类的藻类生物。体类型为单细胞、群体、多核管状或丝状体。细胞壁含多量果胶质。运动的个体和动孢子具有2条不等长鞭毛,极少数具有1条鞭
  • 社会性软件社交软件,或作社会性软件、社群性软件,是指任何支持群体交流的软件。推动社会性软件发展的原动力明显区别于传统的交互过程。社会性软件指的是网络上的一些软件,这些软件让用户
  • 和平者埃德加埃德加一世(古英语:Ēadgār;943年8月7日-975年7月8日),也被称为和平者埃德加、和平者。为英格兰国王(959年-975年)。是爱德蒙一世的儿子。英格兰联邦-护国公时期
  • 蒂蒂亚·德朗厄蒂蒂亚·德朗厄(荷兰语:Titia de Lange,1955年11月11日-),荷兰遗传学家、细胞生物学家,纽约市洛克菲勒大学教授。1955年生于鹿特丹。1985年,在阿姆斯特丹大学获生物化学博士学位。之
  • 叶金川叶金川(1950年6月29日-),台湾公共卫生学者及政治人物。国立台湾大学医学系学士、国立台湾大学公共卫生研究所硕士、哈佛大学流行病学硕士。为第12任中华民国总统马英九倚重的幕
  • 彭堃墀彭堃墀(1936年8月25日-),中国光学专家。生于江苏镇江,原籍四川广元。1961年毕业于四川大学物理系。现任山西大学光电研究所所长、教授。2003年当选为中国科学院院士。1982-1984年