最大似然法

✍ dations ◷ 2024-07-03 08:06:39 #最大似然法
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称极大似然估计、最大概似估计,是用来估计一个概率模型的参数的一种方法。下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。给定一个概率分布 D {displaystyle D} ,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 f D {displaystyle f_{D}} ,以及一个分布参数 θ {displaystyle theta } ,我们可以从这个分布中抽出一个具有 n {displaystyle n} 个值的采样 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,利用 f D {displaystyle f_{D}} 计算出其似然函数:若 D {displaystyle D} 是离散分布, f θ {displaystyle f_{theta }} 即是在参数为 θ {displaystyle theta } 时观测到这一采样的概率。若其是连续分布, f θ {displaystyle f_{theta }} 则为 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} 联合分布的概率密度函数在观测值处的取值。一旦我们获得 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,我们就能求得一个关于 θ {displaystyle theta } 的估计。最大似然估计会寻找关于 θ {displaystyle theta } 的最可能的值(即,在所有可能的 θ {displaystyle theta } 取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在 θ {displaystyle theta } 的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的 θ ^ {displaystyle {widehat {theta }}} 值即称为 θ {displaystyle theta } 的最大似然估计。由定义,最大似然估计是样本的函数。考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样 x 1 = H , x 2 = T , … , x 80 = T {displaystyle x_{1}={mbox{H}},x_{2}={mbox{T}},ldots ,x_{80}={mbox{T}}} 并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为 p {displaystyle p} ,抛出一个反面的概率记为 1 − p {displaystyle 1-p} (因此,这里的 p {displaystyle p} 即相当于上边的 θ {displaystyle theta } )。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为 p = 1 / 3 {displaystyle p=1/3} , p = 1 / 2 {displaystyle p=1/2} , p = 2 / 3 {displaystyle p=2/3} .这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:我们可以看到当 p ^ = 2 / 3 {displaystyle {widehat {p}}=2/3} 时,似然函数取得最大值。 显然地,这硬币的公平性和那种抛出后正面的几率是2/3的硬币是最接近的。这就是 p {displaystyle p} 的最大似然估计。现在假设例子1中的盒子中有无数个硬币,对于 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} 中的任何一个 p {displaystyle p} , 都有一个抛出正面概率为 p {displaystyle p} 的硬币对应,我们来求其似然函数的最大值:其中 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} . 我们可以使用微分法来求极值。方程两边同时对 p {displaystyle p} 取微分,并使其为零。其解为 p = 0 {displaystyle p=0} , p = 1 {displaystyle p=1} ,以及 p = 49 / 80 {displaystyle p=49/80} .使可能性最大的解显然是 p = 49 / 80 {displaystyle p=49/80} (因为 p = 0 {displaystyle p=0} 和 p = 1 {displaystyle p=1} 这两个解会使可能性为零)。因此我们说最大似然估计值为 p ^ = 49 / 80 {displaystyle {widehat {p}}=49/80} .这个结果很容易一般化。只需要用一个字母 t {displaystyle t} 代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母 n {displaystyle n} 代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:对于任何成功次数为 t {displaystyle t} ,试验总数为 n {displaystyle n} 的伯努利试验。最常见的连续概率分布是正态分布,其概率密度函数如下:现在有 n {displaystyle n} 个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其 n {displaystyle n} 个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:或:这个分布有两个参数: μ , σ 2 {displaystyle mu ,sigma ^{2}} .有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性 L ( μ , σ ) = f ( x 1 , , … , x n ∣ μ , σ 2 ) {displaystyle {mbox{L}}(mu ,sigma )=f(x_{1},,ldots ,x_{n}mid mu ,sigma ^{2})} 在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} .最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:这个方程的解是 μ ^ = x ¯ = ∑ i = 1 n x i / n {displaystyle {widehat {mu }}={bar {x}}=sum _{i=1}^{n}x_{i}/n} .这的确是这个函数的最大值,因为它是 μ {displaystyle mu } 里头惟一的一阶导数等于零的点并且二阶导数严格小于零。同理,我们对 σ {displaystyle sigma } 求导,并使其为零。这个方程的解是 σ ^ 2 = ∑ i = 1 n ( x i − μ ^ ) 2 / n {displaystyle {widehat {sigma }}^{2}=sum _{i=1}^{n}(x_{i}-{widehat {mu }})^{2}/n} .因此,其关于 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} 的最大似然估计为:如果 θ ^ {displaystyle {hat {theta }}} 是 θ {displaystyle theta } 的一个最大似然估计,那么 α = g ( θ ) {displaystyle alpha =g(theta )} 的最大似然估计是 α ^ = g ( θ ^ ) {displaystyle {hat {alpha }}=g({hat {theta }})} 。函数g无需是一个双射。最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。 对于独立的观察来说,最大似然估计函数经常趋于正态分布。最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1到n的n张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有 ( n + 1 ) / 2 {displaystyle (n+1)/2} .为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。最大似然估计最早是由罗纳德·费雪在1912年至1922年间推荐、分析并大范围推广的。(虽然以前高斯、拉普拉斯、T. N. Thiele和F. Y. 埃奇沃思也使用过)。 许多作者都提供了最大似然估计发展的回顾。大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。

相关

  • 东非东非即东部非洲地区,根据联合国的次分区共有19个国家或属地:亚洲东亚 · 东南亚 · 南亚 · 中亚 · 西亚/西南亚 · 北亚/西伯利亚  · 东北亚 其他:近东 · 中东
  • 颗粒物悬浮颗粒或称颗粒物(particulate matter (PM))、大气颗粒物(atmospheric particulate matter)、颗粒(particulates),泛指悬浮在空气中的固体颗粒或液滴,颗粒微小甚至肉眼难以辨识但
  • CD8sup+/supCD8受体(英语:CD8-receptor)是细胞毒性T细胞的膜上标记(surface marker)之一。当病菌入侵人体,有一部分必定会被广布的抗原呈现细胞(此时主要指非B细胞的巨噬细胞及棘状细胞)给吞噬,
  • 农业史农业史记录了人类驯化植物和动物、发展以及传播技术用来提高生产力的历史。农业起源于地球不同的地方,农业的起源中心包括旧大陆和新大陆的至少11个独立的区域。早在公元前2
  • 海卫一海卫一是环绕海王星运行的卫星中最大的一颗,它也是太阳系中最冷的天体之一,具有复杂的地质历史和一个相对来说比较年轻的表面。1846年10月10日威廉·拉塞尔(William Lassell)发
  • 意大利天主教民主党天主教民主党(意大利语:Democrazia Cristiana,缩写为DC),前意大利执政党。1919年6月14日成立,原名意大利人民党,是一个天主教的基督教民主主义政党。人民党在1926年被贝尼托·墨索
  • 新泽西州新泽西州(英语:State of New Jersey),简称新州,是美国第四小以及人口密度最高的州,邮政缩写NJ。其命名源自位于英吉利海峡中的泽西岛;其昵称为“花园州”。新泽西州通常被划分在美
  • 捶丸捶丸是中国古代的一项球类运动,类似于现代的高尔夫球。捶丸,顾名思义,捶者打也,丸者球也,是中国古代球类运动项目之一。它的出现与盛行和唐代的球类活动有密切关系。唐代除了足踢
  • 中国效仿西方发展工业的过程进行的并不顺畅中国的现代工业肇始于1860年代的洋务运动,历经一百年多年发展,是推动中国成为现代化国家的主动力。19世纪中期之前,中国是传统的封建农业国家,中国经济体系是以家庭为单位进行生
  • 亚历山德罗·伏特电池 甲烷 伏特 电势物理学亚历山德罗·朱塞佩·安东尼奥·阿纳斯塔西奥·伏打(意大利语:Alessandro Giuseppe Antonio Anastasio Volta,1745年2月18日-1827年3月5日),意大利物理