最大似然法

✍ dations ◷ 2024-11-05 21:35:17 #最大似然法
在统计学中,最大似然估计(英语:maximum likelihood estimation,缩写为MLE),也称极大似然估计、最大概似估计,是用来估计一个概率模型的参数的一种方法。下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。读者还须先熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 同时,读者须先拥有似然函数的背景知识,以了解最大似然估计的出发点及应用目的。给定一个概率分布 D {displaystyle D} ,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 f D {displaystyle f_{D}} ,以及一个分布参数 θ {displaystyle theta } ,我们可以从这个分布中抽出一个具有 n {displaystyle n} 个值的采样 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,利用 f D {displaystyle f_{D}} 计算出其似然函数:若 D {displaystyle D} 是离散分布, f θ {displaystyle f_{theta }} 即是在参数为 θ {displaystyle theta } 时观测到这一采样的概率。若其是连续分布, f θ {displaystyle f_{theta }} 则为 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} 联合分布的概率密度函数在观测值处的取值。一旦我们获得 X 1 , X 2 , … , X n {displaystyle X_{1},X_{2},ldots ,X_{n}} ,我们就能求得一个关于 θ {displaystyle theta } 的估计。最大似然估计会寻找关于 θ {displaystyle theta } 的最可能的值(即,在所有可能的 θ {displaystyle theta } 取值中,寻找一个值使这个采样的“可能性”最大化)。从数学上来说,我们可以在 θ {displaystyle theta } 的所有可能取值中寻找一个值使得似然函数取到最大值。这个使可能性最大的 θ ^ {displaystyle {widehat {theta }}} 值即称为 θ {displaystyle theta } 的最大似然估计。由定义,最大似然估计是样本的函数。考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样 x 1 = H , x 2 = T , … , x 80 = T {displaystyle x_{1}={mbox{H}},x_{2}={mbox{T}},ldots ,x_{80}={mbox{T}}} 并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为 p {displaystyle p} ,抛出一个反面的概率记为 1 − p {displaystyle 1-p} (因此,这里的 p {displaystyle p} 即相当于上边的 θ {displaystyle theta } )。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为 p = 1 / 3 {displaystyle p=1/3} , p = 1 / 2 {displaystyle p=1/2} , p = 2 / 3 {displaystyle p=2/3} .这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,基于二项分布中的概率质量函数公式,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:我们可以看到当 p ^ = 2 / 3 {displaystyle {widehat {p}}=2/3} 时,似然函数取得最大值。 显然地,这硬币的公平性和那种抛出后正面的几率是2/3的硬币是最接近的。这就是 p {displaystyle p} 的最大似然估计。现在假设例子1中的盒子中有无数个硬币,对于 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} 中的任何一个 p {displaystyle p} , 都有一个抛出正面概率为 p {displaystyle p} 的硬币对应,我们来求其似然函数的最大值:其中 0 ≤ p ≤ 1 {displaystyle 0leq pleq 1} . 我们可以使用微分法来求极值。方程两边同时对 p {displaystyle p} 取微分,并使其为零。其解为 p = 0 {displaystyle p=0} , p = 1 {displaystyle p=1} ,以及 p = 49 / 80 {displaystyle p=49/80} .使可能性最大的解显然是 p = 49 / 80 {displaystyle p=49/80} (因为 p = 0 {displaystyle p=0} 和 p = 1 {displaystyle p=1} 这两个解会使可能性为零)。因此我们说最大似然估计值为 p ^ = 49 / 80 {displaystyle {widehat {p}}=49/80} .这个结果很容易一般化。只需要用一个字母 t {displaystyle t} 代替49用以表达伯努利试验中的被观察数据(即样本)的“成功”次数,用另一个字母 n {displaystyle n} 代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:对于任何成功次数为 t {displaystyle t} ,试验总数为 n {displaystyle n} 的伯努利试验。最常见的连续概率分布是正态分布,其概率密度函数如下:现在有 n {displaystyle n} 个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其 n {displaystyle n} 个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:或:这个分布有两个参数: μ , σ 2 {displaystyle mu ,sigma ^{2}} .有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性 L ( μ , σ ) = f ( x 1 , , … , x n ∣ μ , σ 2 ) {displaystyle {mbox{L}}(mu ,sigma )=f(x_{1},,ldots ,x_{n}mid mu ,sigma ^{2})} 在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} .最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:这个方程的解是 μ ^ = x ¯ = ∑ i = 1 n x i / n {displaystyle {widehat {mu }}={bar {x}}=sum _{i=1}^{n}x_{i}/n} .这的确是这个函数的最大值,因为它是 μ {displaystyle mu } 里头惟一的一阶导数等于零的点并且二阶导数严格小于零。同理,我们对 σ {displaystyle sigma } 求导,并使其为零。这个方程的解是 σ ^ 2 = ∑ i = 1 n ( x i − μ ^ ) 2 / n {displaystyle {widehat {sigma }}^{2}=sum _{i=1}^{n}(x_{i}-{widehat {mu }})^{2}/n} .因此,其关于 θ = ( μ , σ 2 ) {displaystyle theta =(mu ,sigma ^{2})} 的最大似然估计为:如果 θ ^ {displaystyle {hat {theta }}} 是 θ {displaystyle theta } 的一个最大似然估计,那么 α = g ( θ ) {displaystyle alpha =g(theta )} 的最大似然估计是 α ^ = g ( θ ^ ) {displaystyle {hat {alpha }}=g({hat {theta }})} 。函数g无需是一个双射。最大似然估计函数在采样样本总数趋于无穷的时候达到最小方差(其证明可见于Cramer-Rao lower bound)。当最大似然估计非偏时,等价的,在极限的情况下我们可以称其有最小的均方差。 对于独立的观察来说,最大似然估计函数经常趋于正态分布。最大似然估计的偏差是非常重要的。考虑这样一个例子,标有1到n的n张票放在一个盒子中。从盒子中随机抽取票。如果n是未知的话,那么n的最大似然估计值就是抽出的票上标有的n,尽管其期望值的只有 ( n + 1 ) / 2 {displaystyle (n+1)/2} .为了估计出最高的n值,我们能确定的只能是n值不小于抽出来的票上的值。最大似然估计最早是由罗纳德·费雪在1912年至1922年间推荐、分析并大范围推广的。(虽然以前高斯、拉普拉斯、T. N. Thiele和F. Y. 埃奇沃思也使用过)。 许多作者都提供了最大似然估计发展的回顾。大部分的最大似然估计理论都在贝叶斯统计中第一次得到发展,并被后来的作者简化。

相关

  • 过氧化氢酶1DGB, 1DGF, 1DGG, 1DGH, 1F4J, 1QQW· catalase activity · receptor binding · antioxidant activity · oxidoreductase activity, acting on peroxide as acceptor
  • 冷漠冷漠或无情指缺乏情感、兴趣及关切之心。冷漠的人保持着冷淡的态度,或会抑压着担忧、兴奋、动机及或激情,并失去对生命以及世界在情感、社会、灵性、哲理和实质的关心和兴趣。
  • Taenia solium猪带绦虫(学名:Taenia solium;pork tapeworm),也称有钩绦虫或链状带绦虫,体长2-3米,宽7-8毫米,共有800-900个节片,后端成熟节片长约10毫米。
  • 实习生实习,是学生到企业、政府部门或其他组织等进行实践的一个过程,目的是为以后的工作做好准备。实习生通常是在校大学生,但是也有一些高中生或者研究生。实习为想要在各自领域获得
  • 石鼓文陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 心脏内科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学心脏病学(英语:cardiology)亦称心脏学,为
  • 5.8S在分子生物学中,5.8S核糖体RNA(5.8S rRNA)是指一类非编码RNA。它是真核生物核糖体的大亚基的组成成分,在蛋白质转译中起重要作用。RNA聚合酶I(英语:RNA polymerase I)先转录出沉降
  • 夏威夷岛夏威夷岛(夏威夷语:Hawaiʻi)是夏威夷群岛中的最大岛屿,又称大岛(Big Island);位于群岛最南端,面积10414平方公里。全岛有丰富的火山活动,岛上有五个盾状火山,设有夏威夷火山国家公园,
  • 让·魏森巴赫让·魏森巴赫(法语:Jean Weissenbach,1946年2月13日-),法国遗传学家。魏斯巴赫擅长于性染色体连锁遗传分析,创造共同的遗传图谱,与映射和几种疾病基因的克隆分析。由魏森巴赫领导的G
  • 纳米晶体纳米晶体指晶粒为纳米尺寸的晶体材料,或具有晶体结构的纳米颗粒。一般晶粒尺寸小于100nm的材料才称为纳米晶体。纳米晶体具有很重要的研究价值。纳米晶体的电学和热力学性质