首页 >
菲涅耳-基尔霍夫衍射公式
✍ dations ◷ 2025-05-16 19:06:34 #菲涅耳-基尔霍夫衍射公式
在光学里,菲涅耳-基尔霍夫衍射公式(Fresnel-Kirchoff's diffraction formula)可以应用于光波传播的理论分析模型或数值分析模型。从菲涅耳-基尔霍夫衍射公式,可以推导出惠更斯-菲涅耳原理,并且解释一些惠更斯-菲涅耳原理无法解释的物理现象与结果。菲涅耳-基尔霍夫衍射公式常被称为“基尔霍夫衍射公式”(Kirchoff's diffraction formula)。从基尔霍夫积分定理,在假定一些近似之后,可以推导出菲涅耳-基尔霍夫衍射公式。惠更斯原理是克里斯蒂安·惠更斯于1678年提出的关于波传播的理论。惠更斯原理表明,假设在时间
t
=
t
0
{displaystyle t=t_{0}}
由主波源Q0发射出的球面波,在时间
t
=
t
1
{displaystyle t=t_{1}}
传播到波前
S
{displaystyle mathbb {S} }
,那么位于波前
S
{displaystyle mathbb {S} }
的每一个面元素矢量
d
S
{displaystyle mathrm {d} mathbf {S} }
都可以被视为一个次波源,所有从这些次波源发射出的次波,在之后时间
t
=
t
2
{displaystyle t=t_{2}}
波前的包络面就是主波源Q0所发射出的球面波在时间
t
=
t
2
{displaystyle t=t_{2}}
的波前。波动有两个基本属性:惠更斯原理只阐述了前一条属性,奥古斯丁·菲涅耳将惠更斯提出的次波的概念加以延伸,提出用“次波相干叠加”的点子来解释衍射现象,这就是惠更斯-菲涅耳原理。这原理表明,波前
S
{displaystyle mathbb {S} }
的每个面元素矢量
d
S
′
{displaystyle mathrm {d} mathbf {S} '}
都可以视为次波源,它们会发射出次波,在空间任意一点P的波扰是所有这些次波在该点P的相干叠加。设定位于波前
S
{displaystyle mathbb {S} }
的任意一点Q,它在点P贡献的复振幅为
d
ψ
(
r
,
r
′
)
{displaystyle mathrm {d} psi (mathbf {r} ,mathbf {r} ')}
;其中,
r
{displaystyle mathbf {r} }
、
r
′
{displaystyle mathbf {r} '}
分别为点P、点Q的位置。在点P的总波扰为为了将这公式具体化,菲涅耳凭借直觉对
d
ψ
(
r
,
r
′
)
{displaystyle mathrm {d} psi (mathbf {r} ,mathbf {r} ')}
作出了如下假设:根据以上假设可以得到如下菲涅耳衍射积分公式其中,
c
{displaystyle c}
是比例常数。在菲涅耳衍射积分公式提出六十余年后,古斯塔夫·基尔霍夫用严格的数学理论推导出菲涅耳-基尔霍夫衍射公式:其中,
α
{displaystyle alpha }
、
χ
{displaystyle chi }
分别是
r
′
^
{displaystyle {hat {mathbf {r} '}}}
、
R
^
{displaystyle {hat {mathbf {R} }}}
与
n
^
{displaystyle {hat {mathbf {n} }}}
之间的夹角。推论从点光源Q0发射的单色光波,其波扰的数值大小与传播距离成反比,在位置
r
′
{displaystyle mathbf {r} '}
以方程表达为
ψ
(
r
′
)
=
ψ
0
e
i
k
r
′
/
r
′
{displaystyle psi (mathbf {r} ')=psi _{0}e^{ikr'}/r'}
。又在其发射出的球面波的波前任意位置,
r
′
^
{displaystyle {hat {mathbf {r} '}}}
与
n
^
{displaystyle {hat {mathbf {n} }}}
同向,夹角
α
=
0
{displaystyle alpha =0}
。设定比例常数
c
=
−
i
/
λ
{displaystyle c=-i/lambda }
,
K
(
χ
)
=
(
1
+
cos
χ
)
/
2
{displaystyle K(chi )=(1+cos chi )/2}
,则可得到菲涅耳衍射积分公式。基尔霍夫积分定理应用格林第二恒等式来推导出齐次波动方程的解答,这解答是以波动方程在任意闭合曲面
S
{displaystyle mathbb {S} }
的每一个点的解答和其一阶导数来表达。对于单频率波,解答为或者其中,
r
{displaystyle mathbf {r} }
、
r
′
{displaystyle mathbf {r} '}
分别是从点Q0到点P、点Q的位移矢量,
ψ
(
r
)
{displaystyle psi (mathbf {r} )}
是在点P的波扰,
R
=
r
−
r
′
{displaystyle mathbf {R} =mathbf {r} -mathbf {r} '}
是从点Q到点P的位移矢量,
R
{displaystyle R}
是其数值大小,
k
{displaystyle k}
是波数,
∇
′
{displaystyle nabla '}
是对于源位置
r
′
{displaystyle mathbf {r} '}
的梯度,
d
S
′
{displaystyle mathrm {d} mathbf {S} '}
是从闭合曲面
S
{displaystyle mathbb {S} }
向外指出的微小面元素矢量,
∂
∂
n
′
{displaystyle {frac {partial }{partial n'}}}
是闭合曲面
S
{displaystyle mathbb {S} }
的法向导数。在推导基尔霍夫衍射公式的过程中,基尔霍夫做了以下假定:从点波源Q0发射的单频率波,其能量与传播距离平方成反比,波扰的数值大小与传播距离成反比,在点Q的波扰以方程表达为其中,
ψ
0
{displaystyle psi _{0}}
是复值波幅。假设点P在闭合曲面
S
{displaystyle mathbb {S} }
之外,应用基尔霍夫积分定理的方程,可以得到在点P的波扰:其中,
n
^
{displaystyle {hat {mathbf {n} }}}
是与
d
S
′
{displaystyle mathrm {d} mathbf {S} '}
同方向的单位矢量。注意到球面出射波的梯度为从基尔霍夫所做的假定,
k
≫
1
/
R
{displaystyle kgg 1/R}
、
k
≫
1
/
r
′
{displaystyle kgg 1/r'}
(例如,假设距离大约为1mm,则对于波长在0.4μm至0.7μm之间的可见光,可以做这假定;但对于波长在1mm至1m之间的微波,这假定不适用),则上述两个公式近似为所以,在点P的波扰其中,
α
{displaystyle alpha }
、
χ
{displaystyle chi }
分别是
r
′
^
{displaystyle {hat {mathbf {r} '}}}
、
R
^
{displaystyle {hat {mathbf {R} }}}
与
n
^
{displaystyle {hat {mathbf {n} }}}
之间的夹角。这就是菲涅耳-基尔霍夫衍射公式,或基尔霍夫衍射公式。如右图所示,假设闭合曲面
S
{displaystyle mathbb {S} }
是圆球面,点波源Q0与圆球面
S
{displaystyle mathbb {S} }
的圆心同点。在圆球面
S
{displaystyle mathbb {S} }
的任意位置,
r
′
^
{displaystyle {hat {mathbf {r} '}}}
与
n
^
{displaystyle {hat {mathbf {n} }}}
同向,所以,注意到
r
′
{displaystyle r'}
是圆球面
S
{displaystyle mathbb {S} }
的半径,对于这积分,
r
′
{displaystyle r'}
值不变,可以从积分里提出。在点P的波扰为其中,
K
(
χ
)
=
1
+
cos
χ
2
{displaystyle K(chi )={frac {1+cos chi }{2}}}
为倾斜因子。应用惠更斯-菲涅耳原理,所得到在点P的波扰的方程,就是这方程。但是,惠更斯-菲涅耳原理无法解释相位差与倾斜因子的物理原因。倾斜因子使得次波的波幅会因为传播方向而不同;朝着主波方向,波幅较大;逆着主波方向,波幅较小。这解释了为什么波动只会朝着前方传播的物理现象。仔细诠释惠更斯-菲涅耳原理的方程:从点波源Q0发射的波幅为
ψ
0
{displaystyle psi _{0}}
的球面波,在点Q的波扰为
ψ
(
r
′
)
=
ψ
0
e
i
k
r
′
/
r
′
{displaystyle psi (mathbf {r} ')=psi _{0}e^{ikr'}/r'}
;而从点Q发射的次波,将倾斜因子与相位差纳入考量,所贡献出的波扰,在点P为总合所有与点Q同波前的点次波源在点P所贡献出的波扰,就可以得到
ψ
(
r
)
{displaystyle psi (mathbf {r} )}
。换另一种直接方法来诠释,从点波源Q0发射的球面波,在点P的波扰为假若这两种诠释都正确,则从这两种
ψ
(
r
)
{displaystyle psi (mathbf {r} )}
的表达式分别计算出的结果,应该可以被核对为相等:为了简易计算,假设
r
≫
r
′
{displaystyle rgg r'}
,则以下近似成立:其中,
θ
{displaystyle theta }
为
r
′
{displaystyle mathbf {r} '}
与
r
{displaystyle mathbf {r} }
之间的夹角。所以,在点P的波扰可以近似为假设波源为有限尺寸,位于曲面
S
{displaystyle mathbb {S} }
的波扰表达为
ψ
(
r
′
)
{displaystyle psi (mathbf {r} ')}
,则位于点P的波扰为假定
k
≫
1
/
R
{displaystyle kgg 1/R}
,则这是基尔霍夫衍射公式最广义的形式。解析涉及到有限尺寸波源的问题,必须用体积分来将波源的每一点所给出的贡献总合在一起。光波是传播于空间的电磁辐射,理当被视为一种电磁场矢量现象。但是,基尔霍夫的理论是标量理论,将光波当作标量处理,这可能会造成偏差。因此,物理学者做了很多实验来检查结果是否准确。他们发现,只要孔径尺寸比波长大很多、孔径与观察屏之间的距离不很近,则使用标量理论可以得到相当准确的答案。但是对于某些问题,例如高分辨率光栅衍射,标量理论就不适用,必须使用矢量理论。
相关
- 合成生物学合成生物学(英语:synthetic biology)是将生物科学应用到日常生活中的一种崭新方式。英国伦敦的皇家科学院(Royal Society)认为:合成生物学结合了其他领域的知识与工具,涉及的领域包
- 听小骨中耳内有三块听小骨(ossicles、auditory ossicles)都是依其形状来命名的:(1)排列方式:锤骨相连在砧骨上,砧骨相连在镫骨上。即镫骨与砧骨相连而砧骨的另一段与锤骨相连。锤骨将力传
- 预防人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学预防医学是指以预防疾病的发生,来代替
- 南高加索语族南高加索语系又称卡特维尔语系(格鲁吉亚语:ქართველური ენები),世界上主要语系之一,属于高加索诸语言。语言人口约520万,主要分布于格鲁吉亚,也有少量分布在土耳其、
- 裂蹄热带孔菌裂蹄热带孔菌(学名:Tropicoporus linteus),是一种菌丝体蕈类,属于热带孔菌属(Tropicoporus)。本物种长期被认指的是中医常说的桑黄,但2012年,台湾国立自然科学博物馆研究员吴声华等人
- THz赫兹(符号:Hz)是频率的国际单位制单位,表示每一秒周期性事件发生的次数。赫兹是以首个用实验验证电磁波存在的科学家海因里希·赫兹命名,常用于描述正弦波、乐音、无线电通讯以及
- 万用表万用表(英语:multimeter),是一种多用途电子测量仪器,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、
- 钍-232钍(标准原子质量(英语:Standard atomic weight):232.0377 )有6种天然存在的同位素,但没有任何一种是稳定的。其中,232Th最为稳定,半衰期长达140亿年(1.4×1010),比地球的年龄和普遍接受
- 太古元太古宙(英语:Archean)是地质年代中的一个宙。太古宙起始于约40亿年前 内太阳系后期重轰炸期的结束(由对月岩的同位素定年确定),地球岩石开始稳定存在并可以保留到现在,而结束于25
- 鍶5s22,8,18,8,2蒸气压第一:549.5 kJ·mol−1 第二:1064.2 kJ·mol−1 第三:4138 kJ·mol主条目:锶的同位素锶(Strontium,旧译作鎴)是一种化学元素,它的化学符号是Sr,它的原子序数是38,