菲涅耳-基尔霍夫衍射公式

✍ dations ◷ 2025-04-02 13:23:57 #菲涅耳-基尔霍夫衍射公式
在光学里,菲涅耳-基尔霍夫衍射公式(Fresnel-Kirchoff's diffraction formula)可以应用于光波传播的理论分析模型或数值分析模型。从菲涅耳-基尔霍夫衍射公式,可以推导出惠更斯-菲涅耳原理,并且解释一些惠更斯-菲涅耳原理无法解释的物理现象与结果。菲涅耳-基尔霍夫衍射公式常被称为“基尔霍夫衍射公式”(Kirchoff's diffraction formula)。从基尔霍夫积分定理,在假定一些近似之后,可以推导出菲涅耳-基尔霍夫衍射公式。惠更斯原理是克里斯蒂安·惠更斯于1678年提出的关于波传播的理论。惠更斯原理表明,假设在时间 t = t 0 {displaystyle t=t_{0}} 由主波源Q0发射出的球面波,在时间 t = t 1 {displaystyle t=t_{1}} 传播到波前 S {displaystyle mathbb {S} } ,那么位于波前 S {displaystyle mathbb {S} } 的每一个面元素矢量 d S {displaystyle mathrm {d} mathbf {S} } 都可以被视为一个次波源,所有从这些次波源发射出的次波,在之后时间 t = t 2 {displaystyle t=t_{2}} 波前的包络面就是主波源Q0所发射出的球面波在时间 t = t 2 {displaystyle t=t_{2}} 的波前。波动有两个基本属性:惠更斯原理只阐述了前一条属性,奥古斯丁·菲涅耳将惠更斯提出的次波的概念加以延伸,提出用“次波相干叠加”的点子来解释衍射现象,这就是惠更斯-菲涅耳原理。这原理表明,波前 S {displaystyle mathbb {S} } 的每个面元素矢量 d S ′ {displaystyle mathrm {d} mathbf {S} '} 都可以视为次波源,它们会发射出次波,在空间任意一点P的波扰是所有这些次波在该点P的相干叠加。设定位于波前 S {displaystyle mathbb {S} } 的任意一点Q,它在点P贡献的复振幅为 d ψ ( r , r ′ ) {displaystyle mathrm {d} psi (mathbf {r} ,mathbf {r} ')} ;其中, r {displaystyle mathbf {r} } 、 r ′ {displaystyle mathbf {r} '} 分别为点P、点Q的位置。在点P的总波扰为为了将这公式具体化,菲涅耳凭借直觉对 d ψ ( r , r ′ ) {displaystyle mathrm {d} psi (mathbf {r} ,mathbf {r} ')} 作出了如下假设:根据以上假设可以得到如下菲涅耳衍射积分公式其中, c {displaystyle c} 是比例常数。在菲涅耳衍射积分公式提出六十余年后,古斯塔夫·基尔霍夫用严格的数学理论推导出菲涅耳-基尔霍夫衍射公式:其中, α {displaystyle alpha } 、 χ {displaystyle chi } 分别是 r ′ ^ {displaystyle {hat {mathbf {r} '}}} 、 R ^ {displaystyle {hat {mathbf {R} }}} 与 n ^ {displaystyle {hat {mathbf {n} }}} 之间的夹角。推论从点光源Q0发射的单色光波,其波扰的数值大小与传播距离成反比,在位置 r ′ {displaystyle mathbf {r} '} 以方程表达为 ψ ( r ′ ) = ψ 0 e i k r ′ / r ′ {displaystyle psi (mathbf {r} ')=psi _{0}e^{ikr'}/r'} 。又在其发射出的球面波的波前任意位置, r ′ ^ {displaystyle {hat {mathbf {r} '}}} 与 n ^ {displaystyle {hat {mathbf {n} }}} 同向,夹角 α = 0 {displaystyle alpha =0} 。设定比例常数 c = − i / λ {displaystyle c=-i/lambda } , K ( χ ) = ( 1 + cos ⁡ χ ) / 2 {displaystyle K(chi )=(1+cos chi )/2} ,则可得到菲涅耳衍射积分公式。基尔霍夫积分定理应用格林第二恒等式来推导出齐次波动方程的解答,这解答是以波动方程在任意闭合曲面 S {displaystyle mathbb {S} } 的每一个点的解答和其一阶导数来表达。对于单频率波,解答为或者其中, r {displaystyle mathbf {r} } 、 r ′ {displaystyle mathbf {r} '} 分别是从点Q0到点P、点Q的位移矢量, ψ ( r ) {displaystyle psi (mathbf {r} )} 是在点P的波扰, R = r − r ′ {displaystyle mathbf {R} =mathbf {r} -mathbf {r} '} 是从点Q到点P的位移矢量, R {displaystyle R} 是其数值大小, k {displaystyle k} 是波数, ∇ ′ {displaystyle nabla '} 是对于源位置 r ′ {displaystyle mathbf {r} '} 的梯度, d S ′ {displaystyle mathrm {d} mathbf {S} '} 是从闭合曲面 S {displaystyle mathbb {S} } 向外指出的微小面元素矢量, ∂ ∂ n ′ {displaystyle {frac {partial }{partial n'}}} 是闭合曲面 S {displaystyle mathbb {S} } 的法向导数。在推导基尔霍夫衍射公式的过程中,基尔霍夫做了以下假定:从点波源Q0发射的单频率波,其能量与传播距离平方成反比,波扰的数值大小与传播距离成反比,在点Q的波扰以方程表达为其中, ψ 0 {displaystyle psi _{0}} 是复值波幅。假设点P在闭合曲面 S {displaystyle mathbb {S} } 之外,应用基尔霍夫积分定理的方程,可以得到在点P的波扰:其中, n ^ {displaystyle {hat {mathbf {n} }}} 是与 d S ′ {displaystyle mathrm {d} mathbf {S} '} 同方向的单位矢量。注意到球面出射波的梯度为从基尔霍夫所做的假定, k ≫ 1 / R {displaystyle kgg 1/R} 、 k ≫ 1 / r ′ {displaystyle kgg 1/r'} (例如,假设距离大约为1mm,则对于波长在0.4μm至0.7μm之间的可见光,可以做这假定;但对于波长在1mm至1m之间的微波,这假定不适用),则上述两个公式近似为所以,在点P的波扰其中, α {displaystyle alpha } 、 χ {displaystyle chi } 分别是 r ′ ^ {displaystyle {hat {mathbf {r} '}}} 、 R ^ {displaystyle {hat {mathbf {R} }}} 与 n ^ {displaystyle {hat {mathbf {n} }}} 之间的夹角。这就是菲涅耳-基尔霍夫衍射公式,或基尔霍夫衍射公式。如右图所示,假设闭合曲面 S {displaystyle mathbb {S} } 是圆球面,点波源Q0与圆球面 S {displaystyle mathbb {S} } 的圆心同点。在圆球面 S {displaystyle mathbb {S} } 的任意位置, r ′ ^ {displaystyle {hat {mathbf {r} '}}} 与 n ^ {displaystyle {hat {mathbf {n} }}} 同向,所以,注意到 r ′ {displaystyle r'} 是圆球面 S {displaystyle mathbb {S} } 的半径,对于这积分, r ′ {displaystyle r'} 值不变,可以从积分里提出。在点P的波扰为其中, K ( χ ) = 1 + cos ⁡ χ 2 {displaystyle K(chi )={frac {1+cos chi }{2}}} 为倾斜因子。应用惠更斯-菲涅耳原理,所得到在点P的波扰的方程,就是这方程。但是,惠更斯-菲涅耳原理无法解释相位差与倾斜因子的物理原因。倾斜因子使得次波的波幅会因为传播方向而不同;朝着主波方向,波幅较大;逆着主波方向,波幅较小。这解释了为什么波动只会朝着前方传播的物理现象。仔细诠释惠更斯-菲涅耳原理的方程:从点波源Q0发射的波幅为 ψ 0 {displaystyle psi _{0}} 的球面波,在点Q的波扰为 ψ ( r ′ ) = ψ 0 e i k r ′ / r ′ {displaystyle psi (mathbf {r} ')=psi _{0}e^{ikr'}/r'} ;而从点Q发射的次波,将倾斜因子与相位差纳入考量,所贡献出的波扰,在点P为总合所有与点Q同波前的点次波源在点P所贡献出的波扰,就可以得到 ψ ( r ) {displaystyle psi (mathbf {r} )} 。换另一种直接方法来诠释,从点波源Q0发射的球面波,在点P的波扰为假若这两种诠释都正确,则从这两种 ψ ( r ) {displaystyle psi (mathbf {r} )} 的表达式分别计算出的结果,应该可以被核对为相等:为了简易计算,假设 r ≫ r ′ {displaystyle rgg r'} ,则以下近似成立:其中, θ {displaystyle theta } 为 r ′ {displaystyle mathbf {r} '} 与 r {displaystyle mathbf {r} } 之间的夹角。所以,在点P的波扰可以近似为假设波源为有限尺寸,位于曲面 S {displaystyle mathbb {S} } 的波扰表达为 ψ ( r ′ ) {displaystyle psi (mathbf {r} ')} ,则位于点P的波扰为假定 k ≫ 1 / R {displaystyle kgg 1/R} ,则这是基尔霍夫衍射公式最广义的形式。解析涉及到有限尺寸波源的问题,必须用体积分来将波源的每一点所给出的贡献总合在一起。光波是传播于空间的电磁辐射,理当被视为一种电磁场矢量现象。但是,基尔霍夫的理论是标量理论,将光波当作标量处理,这可能会造成偏差。因此,物理学者做了很多实验来检查结果是否准确。他们发现,只要孔径尺寸比波长大很多、孔径与观察屏之间的距离不很近,则使用标量理论可以得到相当准确的答案。但是对于某些问题,例如高分辨率光栅衍射,标量理论就不适用,必须使用矢量理论。

相关

  • 赭曲霉毒素赭曲霉毒素(英语:Ochratoxin)是一类由部分曲霉菌和青霉菌分泌的霉菌毒素(mycotoxins),常见于已霉变的饲料、咖啡豆中。可毒害家禽的内脏,使其死亡。赭曲霉毒素包括了7种结构类似的
  • 联合国日内瓦办事处联合国日内瓦办事处(英语:United Nations Office at Geneva,缩写为UNOG)是联合国秘书处驻瑞士日内瓦的一个办事处,是规模仅次于美国纽约联合国总部的联合国机构,又称为联合国欧洲
  • 永续设计可持续设计,是一种以符合经济、社会及生态学三者可持续经营为方针的设计方法。可持续设计领域旨在通过采用综合方法创造“三赢”设计来平衡这些领域的需求。可持续设计的范畴
  • 暗能量暗能量是某种作用于时空结构本身的能量,并且是种均匀的负压力,会导致时空结构膨胀。在物理宇宙学中,暗能量是一种充溢空间的、增加宇宙膨胀速度的难以察觉的能量形式。暗能量假
  • 方位格方位格(英语:locative case,缩写: .mw-parser-output .smallcaps-all{font-variant:small-caps;text-transform:lowercase}.mw-parser-output .smallcaps-all *{font-variant:no
  • 核定位序列核定位序列(或称核定位信号;英语:nuclear localization signal,NLS;或 nuclear localization sequence)是一段氨基酸序列,作为蛋白质通过核运输进入细胞核的标签。一般来说,核定位信
  • 2006 RH1202006 RH120是一颗直径大约5米的近地小行星的临时名字 ,它通常都是绕着太阳公转,但是大约每20年左右会接近地-月系统一次。偶尔这个天体会短暂的进入临时卫星捕获(temporary sa
  • 格伦·西奥多·西博格格伦·西奥多·西博格 (瑞典语:Glenn Teodor Sjöberg,英语:Glenn Theodore Seaborg,1912年4月19日-1999年2月25日),美国核化学家,美国加州大学伯克利分校化学教授、第二任校长(Chance
  • 威廉·杰森·摩根威廉·杰森·摩根(英语:William Jason Morgan,1935年10月10日-),出生在乔治亚州萨凡纳,美国地球物理学家,对板块构造与地球动力学理论方面作出了开创性的贡献。他为哈佛大学地球与行
  • 标准韩国语大韩民国标准语(朝鲜语:대한민국 표준어/大韓民國標準語?),通常简称为标准语(朝鲜语:표준어/標準語?),是韩国使用的标准韩语,被其管理机构——韩国国立国语院定义为“有文化修养的人们