在计算机科学中,抽象化(英语:Abstraction)是将数据与程序,以它的语义来呈现出它的外观,但是隐藏起它的实现细节。抽象化是用来减少程序的复杂度,使得程序员可以专注在处理少数重要的部分。一个电脑系统可以分割成几个抽象层(Abstraction layer),使得程序员可以将它们分开处理。
抽象就是把一个问题或模型,以不同规则或方法所得出的不同的解(求解方法和解本身即抽象层),这些不同的解可以组合并还原成问题或模型的本身。
抽象的意义是可以忽略不是求解过程中必需的解。例如要用计算机程序去模拟“人”,在描述了人的动作(饮食、思考、移动等)符合设计要求后(如可完整表达“人”在坐下时候的动作),其他“人”的细节(躯干、器官、细胞活动乃至人际关系)都可以忽略,以集中设计需要的功能,并减低程序的复杂度。
为了使抽象的成品(算法)不会出现问题,要注意抽象时是否漏掉重要特征。
在程序设计中,高级语言是对机器指令序列的抽象。高级语言的出现,使得程序的编写得以简化,极大提高了程序的编写效率。随着软件技术的发展,组件技术进一步提升了程序抽象的级别。
另一种可取的替代方法是设计一种语言机制,允许程序师在需要的时候构建自己的抽象方法。一个通用的机制是使用过程(procedure)。通过分离过程的定义和规则,编程语言包含了两种重要的抽象方法:参数化抽象(abstraction by parameterization)和规范化抽象(abstraction by specification)。其中:
参数化抽象是用参数替换数据特征来进行抽象。这样能够归纳出模块,从而使其可以用于更多的情况。例如,可以定义一个排序抽象,既能够实现对实数数组的排序,又能够实现对整型数组的排序,或者甚至对数组类型这类一般结构都有用。
规范化抽象是将运行细节(即模块如何实现)抽象为用户所需求的行为(即模块做什么)。这是从具体实现中抽象出模块,需要的仅仅是模块的实现能够符合我们所依赖的表述形式。每当将一个过程与一个注释(这个注释提供了充分的信息,是其他人不用看过程主体就能使用该过程)关系起来,我们就会使用规范化抽象。
程序设计中,抽象类别包括下列4类:
1:过程抽象:能够引入一些新的操作;
2:数据抽象:能够引入新的数据对象类型;
3:反复运算抽象:能够反复运算遍历在集合中的元素,而不必显示如何获得元素的细节;
4:类型层次:能够从多个单独的数据类型中抽象成几组相关的类型。