响应曲面法

✍ dations ◷ 2025-09-19 14:00:42 #实验设计,统计方法,统计理论,最佳化决策,数学最佳化,运筹学,工业工程,系统工程,品质管制

响应曲面法(Response surface methodology,简写RSM)为结合数学与统计而延生出的方法,为最适实验设计或作业条件的有利工具,于1951年,Box 和 Wilson 共同进行数学模式的建立与推导,而后普遍应用于电子、机械、农业、化学工业、生物科技、材料科学、食品科学及工业制程改善等各项研究领域中。

响应曲面法在协助研究人员对科学系统或工业制程中最佳产品设计、制程改善、系统最佳化等问题提供一套分析、求解程序,大部分应用时机均属工业性研究,尤其是当系统特性受大量变数影响状况下最为适当。

响应曲面法之研究问题,一般假设问题为限制性之最佳化问题,目标函数的确切型式是未知的 Y = f ( X 1 , X 2 , , X k ) + ϵ {\displaystyle Y=f(X_{1},X_{2},\cdots ,X_{k})+\epsilon } ϵ {\displaystyle \epsilon } 为误差,响应曲面法一般在此前提的假设与应用系统的限制下,可有效地求得最佳实验或作业变数值。一般来说,执行响应曲面法大致分为两阶段:

为探讨独立变数与响应变数之间的数学模式关系,因此欲对于响应和独立变数之间找出一个适当的近似函数。通常利用独立变数在一些范围里的低阶多项式近似,即为一阶回归模型 (first-order model),

如果系统中有曲率,则必须利用较高阶的多项式,如二阶模型(second-order model)。

获得最适化实务模型便是本阶段最重要的议题。收集资料后以最小平方法 (least squares estimation, LSE) 配适,以寻找出一个适当近似的函数,采用回归分析的显著性检定 (general linear test approach) 来了解独立变数与响应变数间的关系强弱,并检定配适的模式是否恰当 (statistical adequacy)。当实验区域接近最佳响应值附近时,真实响应曲面的曲率 (curvature) 会增加,则考虑二阶模型,同样的,我们需要检定二阶模式的适当性。当这个二阶回归模式配适良好时,便可以利用这二阶模式求得最适操作点及特征化响应曲面。

在应用上主要存在下列二项限制:

因此大量的研究注重在最适化协定堆叠 (protocol stack) 中个体层的协议之执行。一些基本的参数如下:

而这里主要探讨的是行动式随意网络里 IEEE 802.11 中的 媒体存取控制 (Medium access control, MAC) 协定和随意随选距离向量 (Ad hoc On demand Distance Vector, AODV) 路由协议间的通讯。由于目前没有一个通用的方法论来确认和最适化协定之间的通讯,这里利用响应曲面法来解决这些问题。

考虑三个可能影响的因子:

A:Active route timeoutB:Max route request wait timeoutC:Max retransmissions

将三个因子分别设定成二个水准(利用 ns-2 模拟器中 AODV 软件分配的预设值)

而网络性能上考虑以下二个变数做为响应变数:

Average throughput:目的地節點每秒收到的數量(bytes/sec)Average packet delay:一個封包從來源送到目的節點所花的平均時間(sec)

因此我们将网络分析的问题转变为二水准三因子实验设计(response surface design)

接下来利用响应曲面法寻求最佳化 (response surface optimization) ,使得 average throughput 最大,average packet delay 最小。并且在某个限制式下,寻求最佳解,例如,延迟时间在 400ms 之内。

可利用 ns-2 模拟器来模拟出 20 次不同的流动情境,拿预设值和用 RSM 找出的最佳解做比较。

在不同的网络设定下,有可能导致不同因子对于响应变数的影响程度。因此对于因子在不同网络环境下之表现行为的了解,对 RSM 是很重要的。不仅可以决定超初的搜寻范围,亦可决定最陡上升(下降)法的步伐大小。某些应用中,平均网络速度及节点密度是已知的条件,在自然世界的动态中可能会不合适,因此在分析时亦需将当下的网络条件随时做改变。关于这个问题,可将因子配上一个权重表示,设定所有因子的权重起始值为1,而权重将随着网络设定的不同而改变;0表示对响应变数没有影响。

此例子为在 IEEE 802.11 中的媒体存取控制协定和随意随选距离向量路由协定中的通讯,其他的协定下的补充研究可参考

相关

  • 流鼻血鼻衄,俗称流鼻血、淌大寒,称鼻出血,是指由于鼻孔内的毛细血管脆弱,血管受到破坏后,血液从鼻孔里流出,是一种医学上的疑难病症。大多数是从一个鼻孔里出,但偶尔也会两个鼻孔一起出。
  • 德拜德拜(符号为D)是一种CGS制的矢量单位。 它是偶极矩(或称电偶极矩)的非国际制单位(non-SI metric system|metric unit)。这个单位为纪念物理学家彼得·德拜而以其名字命名。德拜被
  • 土耳其人土耳其 63,589,988–65,560,701(2008 est. of 2015 pop.)  北塞浦路斯 315,000 d主要为伊斯兰教土耳其人 (土耳其语:Türkler)是土耳其共和国的主体民族(占人口70-75%),绝大多
  • 斯威士兰中央银行坐标:26°19′36″S 31°08′46″E / 26.32679°S 31.146068°E / -26.32679; 31.146068斯威士兰中央银行(英语:Central Bank of Eswatini,简称CBE),是斯威士兰王国的中央银行,系斯
  • 李查维尼波罗国(尼泊尔语:लिच्छवी वंश,转写:Licchavī vanśa,直译“离车毗王朝”)是尼泊尔第一个有明文记录王朝,从约公元400年存续至750年,由离车族(英语:Licchavi (clan))(Liccha
  • 卡多卡多县(Caddo County, Oklahoma)是美国奥克拉荷马州西部的一个县。面积3,342平方公里。根据美国2000年人口普查,共有人口30,150人。县治阿纳达科 (Anadarko)。成立于1901年8月6
  • 右翼自由意志主义右翼自由意志主义(英语:Right-libertarianism)是指崇尚资本主义市场经济和个人权利,反对现代福利国家的自由主义政治思想。右翼自由主义强烈支持私有制和财产权,强烈反对政府对自
  • 五加五加(学名:)为五加科五加属的植物。灌木;掌状复叶,在长枝上互生,短枝上簇生;小叶常为5枚;夏季开黄绿色花,伞形花序;黑色球形核果。五加主要产于中国的中部、东部、南部和西南部,生长于
  • 榎本喜八榎本 喜八(Enomoto Kihachi, 1936年(昭和11年)12月5日 - 2012年(平成24年)3月14日)为日本的棒球选手,出生于东京都中野区上鹭宫。他曾效力于日本职棒罗德猎户星队等,1972年退休,生涯
  • 二元酸又称双质子酸。质子指H+,故意旨可解离出两个氢离子的酸,常见的有亚磷酸、硫化氢、硫酸、亚硫酸、碳酸、草酸等。含氧酸的H+不一定能全数放出,因为他们不一定接在氧原子上。此分