离散几何学

✍ dations ◷ 2025-02-23 07:32:56 #离散几何学
离散几何和组合几何是研究离散几何对象的组合性质和构造方法的几何学的分支。离散几何的大多数问题涉及到基本几何对象的有限集合或离散空间,比如点,线,平面,圆,球,多边形和四维空间。这个主题集中在这些对象的组合属性上,比如他们怎样与另一个相交,或者,它们如何被安排来涵盖一个更大的对象。离散几何与凸几何和计算几何有很大的重叠部分,与下列学科密切相关,如有限几何,组合优化,数字几何, 离散微分几何,几何图论,复曲面几何和组合拓扑。尽管多面体和分割已经已经被像开普勒和柯西这样的大数学家等人研究了多年,现代离散几何却源于19世纪后期。早期的研究主题是:阿克塞尔· 图厄研究的半群问题, 雷耶和斯坦尼茨研究的射影配置 、赫尔曼·闵可夫斯基研究的几何数论,及泰特,希伍德和Hadwiger研究的的四色定理。拉斯洛*Fejes Tóth, H.S.M.考克斯特和埃尔德什·帕尔,奠定了离散几何的基础。多面体是一个有几个平面的几何对象,它存在于任何一般的维数。 多边形可以是来自二维的多面体, 三维甚至更高维的多面体(例如在四的维空间上的 4-多面体 )。一些理论进一步推广这样的想法包括无限多面体(apeirotopes和分割),和抽象多面体。以下是离散几何中多面体研究的某些方面:包装、覆盖,平铺,是以一个规则的方式在平面或多面上安排统一对象的所有方式(典型的有圈,圆域,或铺)。球体包装是在容纳空间内的非重叠球体的排列。所考虑的圆域通常是规模一致、且该空间通常是三维欧几里德空间。然而,球体包装问题可以大致地被认为是不平衡域,像n维-欧几里德空间(在那里,问题变成二维的圈包装,或更高维的超球空间),或非欧几里德空间,例如双曲空间。平坦面上的镶嵌是用一个或多个几何形状以没有重叠和间隙的方式来分割平坦的曲面,称为“铺”。在数学中,镶嵌可以推广到更高维。该领域的具体主题还包括:结构刚度是一个预测由灵活的连杆结构或铰链连接而成的刚体组成的集合(合奏)的灵活性的组合数学。该主题包括:发生结构形成平面(如仿射、射影平面、有限反演平面)正如从公理的定义中看到的那样。 发生的结构还形成了更高维的类似物和有时被称为有限几何的有限结构。从形式上看,一个发生结构是一个三角在 P 是一系列的"点", L是一系列的"线" 表示发生关系。I中的元素称为标志。若我们说点的 p "位于"的线 上。主题延伸:面向阵 是一个提取了有向图的抽象属性和向量空间上的矢量在有序域 (尤其是有序的矢量空间)上的排列的数学结构。 比较而言,一个普通(即非定向的)拟阵提取了线性无关属性,两者在图上不一定具有导向性,在矢量域的排列上,不一定有序的。几何图 是一个由顶点和边缘连接而成的与几何学相关的图。实例包括欧几里德图,1-骨架 的多面体或多胞形,相交图以及可视性图。主题延伸:单纯复形属拓扑空间的一种,将 点,线段,三角形“粘合在一起”建造起来,形成 n-维的对应方 (见图)。 不要将单纯复形与现代单纯同伦论中出现的更抽象的概念单纯集合混淆。单纯复形的纯粹的组合对应是一个抽象的单纯复形。拓扑组合学采用拓扑学中组合的概念,并在20世纪初期并入到代数拓扑的领域。在1978年,当拉斯洛*Lovász证明Kneser猜想的时候,用代数拓扑解决组合数学问题的方法的情况逆转,因而开始拓扑组合新的研究。Lovász在博苏克-乌拉姆定理使用了这个理论且该理论在该新领域保留着关键性的作用。这个定理有许多相关版本及类似物且已被用于公平分割分配的研究中。主题延伸:一个离散组是一个装有离散的拓扑结构的群 G 。在该拓扑下,G成为一个拓扑群。 一个拓扑群G的离散组是一个子群H,其相对化拓扑(子空间拓扑)是分立的。例如,整数Z,形成离散子群实R (在度量空间的标准下),但有理数Q做不到这样。局部紧致拓扑群的格是一个离散群,其商空间具有有限不变量。特殊的集群例子 Rn,它相当于通常的几何概念的一个格,格的代数结构和几何整体的所有格二者都比较好理解。阿尔芒波莱尔, 哈里什 - 钱德拉,乔治·丹尼尔·莫斯托,玉河恒夫,M. S. Raghunathan,格列戈里·马尔古利斯,罗伯特·杰弗里·齐默等人从20世纪50年代至20世纪70年代提供的案例和形成的众多理论中获得更深的结论来在局部域设置幂零李群和约化群。在20世纪90年代,海曼·贝斯和 Alexander Lubotzky 开始研究树格,该领域至今是一个活跃的研究领域。主题延伸:数字几何处理离散空间组(通常是分散点集)被认为是欧几里德空间的2D或3D数字化的模型或图片的对象。简单地说,数字化正在用一组离散的点来替代事物。我们从电视屏幕上看到的图像, 计算机或者报纸上的光栅显示,都是实际上的数字图像。其主要应用领域是计算机图形和图像分析。离散微分几何是研究微分几何里离散变换的概念。有多边形, 网格,和单纯复形,而不是光滑的曲线和曲面,它被用在计算机图形和拓扑组合的研究中。相关主题:

相关

  • 温带季节季节是每年循环出现的地理景观相差比较大的几个时间段。不同的地区,其季节的划分也是不同的。对温带地区而言,一年分为四季,即春季、夏季、秋季、冬季;而对于赤道地区只有旱季和
  • 陶尔米纳陶尔米纳(Taormina),在意大利西西里岛的墨西拿省内、位于墨西拿和卡塔尼亚之间,人口约九千九百余。公元前400年陶尔米纳曾是希腊的殖民地。公元前212年又归罗马帝国管辖。陶尔米
  • 查理曼帝国加洛林王朝(法语:les Carolingiens,旧称Carlovingiens,中世纪拉丁语:Karolingi,又译卡洛林王朝)是自公元751年后统治法兰克王国的王朝。在此之前,其王朝成员以“宫相”的身份涉理王
  • 氰化钾氰化钾(化学式:KCN),俗称山埃钾,是氰化氢的钾盐。在一般环境下氰化钾是一种呈无色或白色、有杏仁味、外观与糖相似并且易溶于水的固体。尽管有剧毒,由于是能与元素金组成可溶化合
  • 婚前性行为婚前性行为(英语:pre-marital sex),指人类性行为的参与者并未明确建立彼此婚姻配偶时发生性关系。这在一些人类文化与信仰的伦理传统中被视为禁忌,较一般不合乎礼法、道德更严重
  • 科恩沃尔特·科恩(英语:Walter Kohn,1923年3月9日-2016年4月19日)出生于奥地利维也纳,1998年与约翰·波普共同得到诺贝尔化学奖。科恩在密度泛函理论的发展中扮演了关键角色。1901年:范
  • 果蝠10种,见本文果蝠属(学名:Rousettus),哺乳纲翼手目狐蝠科的一属,而与果蝠属(棕果蝠)同科的动物尚有灰果蝠属(灰果蝠)、球果蝠属(布氏球果蝠)、狐蝠属(游狐蝠)、锥齿狐蝠属(锥齿狐蝠)等之数种
  • 柔性印刷电路板柔性印刷电路板(Flexible Printed Circuit,FPC)又称为柔性线路板、软性电路板、软性线路板、挠性线路板、软板等,是一种特殊的印制电路板。它的特点是重量轻、厚度薄、柔软、可
  • 否定推得肯定否定前提推得肯定结论(affirmative conclusion from a negative premise)是一种形式谬误,是因三段论中有前提为否定,而结论为肯定,导致论证无效。例句:推理规则:例句分析结果:有效性
  • 全身过敏反应过敏性休克(英语:Anaphylaxis)反应系指一种严重的全身性过敏反应,发病极快且具有致命性。通常会伴随以下症状:起痒疹、舌头或咽喉肿胀、呼吸困难、呕吐、头晕及低血压;以上症状往