在数学与物理中,哈密顿向量场是辛流形上一个向量场,定义在任何能量函数或哈密顿函数上。以物理学家和数学家威廉·卢云·哈密顿命名。哈密顿向量场是经典力学中的哈密顿方程的几何表现形式,哈密顿向量场的积分曲线表示哈密顿形式的运动方程的解。由哈密顿向量场生成的流是辛流形的微分同胚,在物理中称为典范变换,在数学中称为(哈密顿)辛同胚。
哈密顿向量场可以更一般地定义在任何泊松流形上。对应于流形上的函数 与 的两个哈密顿向量场的李括号也是一个哈密顿向量场,其哈密顿函数由 与 的泊松括号给出。
假设 (,ω) 是一个辛流形。因为辛形式 ω 非退化,诱导了切丛 上的1-形式可以与向量场等价起来,故任何可微函数 = Ω(d),称为哈密顿函数 的哈密顿向量场。即对 上任何向量场 ,等式
一定成立。
注:一些作者定义哈密顿向量场为相反的符号;需注意物理与数学著作的不同习惯。
假设 是一个 2 维辛流形。则由达布定理,我们在局部总可以取 的一个典范坐标 的哈密顿向量场具有形式
这里 Ω 是一个 2 × 2 矩阵
假设 = R2n 是 2 维具有(整体)典范坐标的辛向量空间。
哈密顿向量场的概念导致了辛流形 上的可微函数的一个斜对称双线性算子,这就是泊松括号,由如下公式定义
这里 的李导数。此外,我们可以验证有恒等式:
这里右边表示哈密顿函数 与 对应的哈密顿向量场的李括号。事实上有:
作为一个推论,泊松括号满足雅可比恒等式。
这意味着 上可微函数组成的向量空间,赋予泊松括号,是 R 上的一个李代数,且映射 连通则为常数)。