首页 >
电磁波
✍ dations ◷ 2025-02-23 11:58:33 #电磁波
电磁波是指同相振荡且互相垂直的电场与磁场,在空间中以波的形式传递能量和动量,其传播方向垂直于电场与磁场的振荡方向。电磁波不需要依靠介质进行传播,在真空中其传播速度为光速。电磁波可按照频率分类,从低频率到高频率,主要包括无线电波、兆赫辐射、微波、红外线、可见光、紫外线、X射线和伽马射线。人眼可接收到的电磁波,波长大约在380至780nm之间,称为可见光。在可见光波长以外的电磁辐射被发现于19世纪初期。红外线辐射的发现归因于天文学家威廉·赫歇尔,他于1800年在伦敦皇家学会发表了他的成果。电磁波首先由詹姆斯·麦克斯韦于1865年预测出来,而后由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实存在。麦克斯韦推导出电磁波方程,一种波动方程,这清楚地显示出电场和磁场的波动本质。因为电磁波方程预测的电磁波速度与光速的测量值相等,麦克斯韦推论光波也是电磁波:283。无线电波被海因里希·赫兹在1887年第一个刻意产生,使用电路计算出比可见光低得多的频率上产生振荡,随之产生了由麦克斯韦方程所建议的振荡电荷和电流。赫兹还开发检测这些电波的方法,并产生和特征化这些后来被称为无线电波和微波。:286,7威廉·伦琴发现并命名了X射线。 在1895年11月8日的应用于真空管上的高电压试验后,他注意到在附近的镀膜玻璃板的荧光。在一个月内,他发现了X射线的主要性质。:307电动力学专门研究电磁波的物理行为,是电磁学的分支。在电动力学里,根据麦克斯韦方程组,随着时间变化的电场产生了磁场,反之亦然。因此,一个振荡中的电场会产生振荡的磁场,而一个振荡中的磁场又会产生振荡的电场,这样子,这些连续不断同相振荡的电场和磁场共同地形成了电磁波:326:894-897。电场,磁场都遵守叠加原理。:9因为电场和磁场都是矢量场,所有的电场矢量和磁场矢量都适合做矢量加运算。例如,一个行进电磁波,入射于一个介质,会引起介质内的电子振荡,因而使得它们自己也发射电磁波,因而造成折射或衍射等等现象:959-968。在非线性介质内(例如,某些晶体),电磁波会与电场或磁场产生相互作用,这包括法拉第效应:366-368、克尔效应等等。当电磁波从一种介质入射于另一种介质时,假若两种介质的折射率不相等,则会产生折射现象,电磁波的方向和速度会改变。斯涅尔定律专门描述折射的物理行为:388。假设,由很多不同频率的电磁波组成的光波,从空气入射于棱镜。而因为菱镜内的材料的折射率跟电磁波的频率有关,会产生色散现象:光波会色散成一组可观察到的电磁波谱:398-405。波是由很多前后相继的波峰和波谷所组成,两个相邻的波峰或波谷之间的距离称为波长。电磁波的波长有很多不同的尺寸,从非常长的无线电波(有一个足球场那么长)到非常短的伽马射线(比原子半径还短):890。描述光波的一个很重要的物理参数是频率。一个波的频率是它的振荡率,国际单位制单位是赫兹。每秒钟振荡一次的频率是一赫兹。频率与波长成反比:其中,
v
{displaystyle v,!}
是波速(在真空里是光速;在其它介质里,小于光速),
ν
{displaystyle nu ,!}
是频率,
λ
{displaystyle lambda ,!}
是波长。当波从一个介质传播至另一个介质时,波速会改变,但是频率不变:961。干涉是两个或两个以上的波,叠加形成新的波样式。假若这几个电磁波的电场同方向,磁场也同方向,则这干涉是相长干涉;反之,则是摧毁性干涉:959-962。电磁波的能量,又称为辐射能。这能量,一半储存于电场,另一半储存于磁场。用方程表达:897-899:其中,
u
{displaystyle u,!}
是单位体积的能量,
E
{displaystyle E,!}
是电场数值大小,
B
{displaystyle B,!}
是磁场数值大小,
ϵ
0
{displaystyle epsilon _{0},!}
是电常数,
μ
0
{displaystyle mu _{0},!}
是磁常数。呈加速运动的电荷或随着时间而变化的电磁场,会产生电磁波。在自由空间里,电磁波以光速传播。准确的计算其物理行为必须引用推迟时间的概念。这会增加电场和磁场的表达式的复杂程度(参阅杰斐缅柯方程)。这些多加的项目详细地描述电磁波的物理行为。当任意一根导线(或别种导电体,像天线)传导交流电的时候,同频率的电磁波也会被发射出来。电磁波必然遵守一条定则:不管观察者的速度有多快或多慢,相对于观察者,电磁波永远以光速传播于真空。爱因斯坦从这洞察发展出狭义相对论,成为狭义相对论的第二条基本原理。在其它不同于真空的介质内,电磁波传播的速度会小于光速。一个介质的折射率
n
{displaystyle n,!}
是光速
c
{displaystyle c,!}
与电磁波传播于介质的速度
v
{displaystyle v,!}
的比例:按照波长长短,从长波开始,电磁波可以分类为无线电波、微波、红外线、可见光、紫外线、X-射线和伽马射线等等。普通实验使用的光谱仪就足以分析从2 奈米到2500 奈米波长的电磁波。使用这种仪器,可以得知物体、气体或甚至恒星的详细物理性质。这是天文物理学的必备仪器。例如,因为超精细分裂,氢原子会发射波长为21.12公分的无线电波。人类眼睛可以观测到波长大约在400 奈米和700 奈米之间的电磁波,称为‘可见光’。每一种电极性分子,会对应着某些特定频率的微波,使得电极性分子随着振荡电场一起旋转,这机制称为电介质加热(dielectric heating)。由于这种机制(不是热传导机制),电极性分子会吸收微波的能量。微波炉就是应用这运作原理,通过水分子的旋转,更均匀地将食物加热,减少等候时间。麦克斯韦方程组可以描述电磁波的普遍物理现象。在自由空间里,源项目等于零(源电荷等于零,源电流等于零)。除了没有任何事发生的解以外(电场和磁场都等于零),方程仍旧允许不简单的解,电场和磁场随着时间和位置变化。采用国际单位制,处于自由空间状况的麦克斯韦方程组表达为其中,
E
{displaystyle mathbf {E} ,!}
是电场,
B
{displaystyle mathbf {B} ,!}
是磁场,
ϵ
0
{displaystyle epsilon _{0},!}
是真空电容率,
μ
0
{displaystyle mu _{0},!}
是真空磁导率。满足上述条件的一个解是
E
=
B
=
0
{displaystyle mathbf {E} =mathbf {B} =mathbf {0} ,!}
,然而这是一个平庸解,并没有什么有意思的物理意义。若想得到有意思的解答,必须稍做一些运算。取公式(2)的旋度,应用一个矢量恒等式,再将公式(1)代入,则可得到:应用公式(4),公式(5)右边变为将公式(6)和(7)代回公式(5),可以得到电场的波动方程:使用类似的方法,可以得到磁场的波动方程:这两个方程就是真空的电磁波方程,描述传播于真空的电磁波。更简易地表达,其中,
◻
=
∇
2
−
1
v
0
2
∂
2
∂
t
2
{displaystyle Box =nabla ^{2}-{frac {1}{{v_{0}}^{2}}}{frac {partial ^{2}}{partial t^{2}}},!}
是达朗白算符,
v
0
=
1
μ
0
ϵ
0
{displaystyle v_{0}={frac {1}{sqrt {mu _{0}epsilon _{0}}}},!}
是波动传播的速度。在自由空间里,
v
0
{displaystyle v_{0},!}
是光速
c
{displaystyle c,!}
。麦克斯韦方程组连结了三个基本物理量:真空电容率
ϵ
0
{displaystyle epsilon _{0},!}
、真空磁导率
μ
0
{displaystyle mu _{0},!}
和光速
c
{displaystyle c,!}
。这组关系是在麦克斯韦的电动力学发展之前就由威廉·爱德华·韦伯与鲁道夫·科尔劳施发现,但麦克斯韦是首个创造与波在光速传播相一致的场论的人。前面已经找到了两个方程。但是麦克斯韦方程组有四个方程,所以,还有很多重要的讯息隐藏在这个方程里。思考一个一般的电场矢量波动的解,其中,
E
0
{displaystyle mathbf {E} _{0},!}
是常数振幅,
f
(
.
.
.
)
{displaystyle f(...),!}
是任意二次可微函数,
k
{displaystyle mathbf {k} ,!}
是波矢,
r
0
{displaystyle mathbf {r} _{0},!}
是位置矢量,
ω
{displaystyle omega ,!}
是角频率。波动方程
◻
f
=
0
{displaystyle Box mathbf {f} =0,!}
的通解是
f
(
k
⋅
r
−
ω
t
)
{displaystyle fleft(mathbf {k} cdot mathbf {r} -omega tright),!}
。也就是说,将电场的公式代入公式(1):只要电场垂直于波矢(波动传播的方向),这函数形式的电场必定满足麦克斯韦方程组:再将电场的公式代入公式(2):所以,电场与其对应磁场的关系为:在自由空间内,电磁波不只是有以光速传播的性质,电磁波的电场部分和磁场部分有特定的相对定向、相对大小。它们之间的相位一样。电场,磁场,波动传播的方向,都互相垂直于对方。波动传播的方向是
E
×
B
{displaystyle mathbf {E} times mathbf {B} ,!}
。从电磁波传播的方向看去,电场或许是以上下的方式震荡,而磁场以左右的方式震荡。但若将这图样旋转90度,则电场以左右的方式震荡,而磁场以上下的方式震荡,而波动传播的方向仍旧相同。这是波动方程的另一种解答。对于波动同样传播的方向,这定向的任意性现象称为偏振。
相关
- 炎症炎症反应、炎性反应,俗称炎症,是指具有血管系统的活体组织对致炎因子及局部损伤所发生的防御性为主的反应,中心环节是血管反应,是生物组织受到外伤、出血或病原感染等刺激,激发的
- 嗜盐生物嗜极生物(英文:Extremophile),或者称作嗜极端菌,是可以(或者需要)在极端环境(英语:extreme environment)中生长繁殖的生物,通常为单细胞生物。与此相对的,在较为温和的环境中生活的生物,
- 氨基酸氨基酸是生物学上重要的有机化合物,由氨基(-NH2)和羧基(-COOH)的官能团,以及连到每一个氨基酸的侧链组成。氨基酸是构成蛋白质的基本单位,赋予蛋白质特定的分子结构形态,使其分子具
- 健康经济学健康经济学是有关健康和保健消费、生产中的效率,效益,价值等问题的经济学的一个分支,研究健康市场上的供给与需求平衡问题。5个典型被分析的市场包括:健康经济学相关的议题有:健
- 阿斯克勒庇俄斯阿斯克勒庇俄斯(希腊语:Ἀσκληπιός,拉丁语:Asclepius),是古希腊神话中的医神,在古罗马神话中被称为埃斯库拉庇乌斯(拉丁语:Aesculapius),他是太阳神阿波罗之子,形象为手持蛇杖。
- 壬醛糖2,3,4,5,6,7,8,9-八羟基壬醛(IUPAC名:2,3,4,5,6,7,8,9-octahydroxynonanal)是一类壬醛糖。共有128种镜像异构物,例如L-核-D-甘露壬糖等。2,3,4,5,6,7,8,9-octahydroxynonanal的
- 幽门管幽门(pylorus)是胃和十二指肠的连接口,包含幽门窦(pyloric antrum)和幽门管(pyloric canal)两个部分。幽门括约肌(pyloric sphincter)在幽门管末端,可以控制食物从胃进入十二指肠的过
- 脊神经脊神经(spinal nerve)在脊髓和身体之间传递信号。信号混合有运动神经,感觉神经和自主神经的信号。在人体中有31对脊神经(spinal nerves),每一对脊神经在脊柱的双侧。分在脊柱的
- 病因学病原学又称为病因学是形成疾病的因素。因为不同性质的病原,大致上可以分成直接病因与助因两类。直接病因最常见的是创伤,或者是因为感染或辐射暴露导致的疾病。直接病因不一定
- 脱衣舞俱乐部脱衣舞俱乐部(Strip club)是脱衣舞表演者提供成人娱乐的场所,他们主要会表演脱衣舞等艳舞。脱衣舞俱乐部通常都是以夜总会或酒吧模式经营,但也可能会采用卡巴莱或剧场模式。二战