电磁波

✍ dations ◷ 2025-04-02 14:41:50 #电磁波
电磁波是指同相振荡且互相垂直的电场与磁场,在空间中以波的形式传递能量和动量,其传播方向垂直于电场与磁场的振荡方向。电磁波不需要依靠介质进行传播,在真空中其传播速度为光速。电磁波可按照频率分类,从低频率到高频率,主要包括无线电波、兆赫辐射、微波、红外线、可见光、紫外线、X射线和伽马射线。人眼可接收到的电磁波,波长大约在380至780nm之间,称为可见光。在可见光波长以外的电磁辐射被发现于19世纪初期。红外线辐射的发现归因于天文学家威廉·赫歇尔,他于1800年在伦敦皇家学会发表了他的成果。电磁波首先由詹姆斯·麦克斯韦于1865年预测出来,而后由德国物理学家海因里希·赫兹于1887年至1888年间在实验中证实存在。麦克斯韦推导出电磁波方程,一种波动方程,这清楚地显示出电场和磁场的波动本质。因为电磁波方程预测的电磁波速度与光速的测量值相等,麦克斯韦推论光波也是电磁波:283。无线电波被海因里希·赫兹在1887年第一个刻意产生,使用电路计算出比可见光低得多的频率上产生振荡,随之产生了由麦克斯韦方程所建议的振荡电荷和电流。赫兹还开发检测这些电波的方法,并产生和特征化这些后来被称为无线电波和微波。:286,7威廉·伦琴发现并命名了X射线。 在1895年11月8日的应用于真空管上的高电压试验后,他注意到在附近的镀膜玻璃板的荧光。在一个月内,他发现了X射线的主要性质。:307电动力学专门研究电磁波的物理行为,是电磁学的分支。在电动力学里,根据麦克斯韦方程组,随着时间变化的电场产生了磁场,反之亦然。因此,一个振荡中的电场会产生振荡的磁场,而一个振荡中的磁场又会产生振荡的电场,这样子,这些连续不断同相振荡的电场和磁场共同地形成了电磁波:326:894-897。电场,磁场都遵守叠加原理。:9因为电场和磁场都是矢量场,所有的电场矢量和磁场矢量都适合做矢量加运算。例如,一个行进电磁波,入射于一个介质,会引起介质内的电子振荡,因而使得它们自己也发射电磁波,因而造成折射或衍射等等现象:959-968。在非线性介质内(例如,某些晶体),电磁波会与电场或磁场产生相互作用,这包括法拉第效应:366-368、克尔效应等等。当电磁波从一种介质入射于另一种介质时,假若两种介质的折射率不相等,则会产生折射现象,电磁波的方向和速度会改变。斯涅尔定律专门描述折射的物理行为:388。假设,由很多不同频率的电磁波组成的光波,从空气入射于棱镜。而因为菱镜内的材料的折射率跟电磁波的频率有关,会产生色散现象:光波会色散成一组可观察到的电磁波谱:398-405。波是由很多前后相继的波峰和波谷所组成,两个相邻的波峰或波谷之间的距离称为波长。电磁波的波长有很多不同的尺寸,从非常长的无线电波(有一个足球场那么长)到非常短的伽马射线(比原子半径还短):890。描述光波的一个很重要的物理参数是频率。一个波的频率是它的振荡率,国际单位制单位是赫兹。每秒钟振荡一次的频率是一赫兹。频率与波长成反比:其中, v {displaystyle v,!} 是波速(在真空里是光速;在其它介质里,小于光速), ν {displaystyle nu ,!} 是频率, λ {displaystyle lambda ,!} 是波长。当波从一个介质传播至另一个介质时,波速会改变,但是频率不变:961。干涉是两个或两个以上的波,叠加形成新的波样式。假若这几个电磁波的电场同方向,磁场也同方向,则这干涉是相长干涉;反之,则是摧毁性干涉:959-962。电磁波的能量,又称为辐射能。这能量,一半储存于电场,另一半储存于磁场。用方程表达:897-899:其中, u {displaystyle u,!} 是单位体积的能量, E {displaystyle E,!} 是电场数值大小, B {displaystyle B,!} 是磁场数值大小, ϵ 0 {displaystyle epsilon _{0},!} 是电常数, μ 0 {displaystyle mu _{0},!} 是磁常数。呈加速运动的电荷或随着时间而变化的电磁场,会产生电磁波。在自由空间里,电磁波以光速传播。准确的计算其物理行为必须引用推迟时间的概念。这会增加电场和磁场的表达式的复杂程度(参阅杰斐缅柯方程)。这些多加的项目详细地描述电磁波的物理行为。当任意一根导线(或别种导电体,像天线)传导交流电的时候,同频率的电磁波也会被发射出来。电磁波必然遵守一条定则:不管观察者的速度有多快或多慢,相对于观察者,电磁波永远以光速传播于真空。爱因斯坦从这洞察发展出狭义相对论,成为狭义相对论的第二条基本原理。在其它不同于真空的介质内,电磁波传播的速度会小于光速。一个介质的折射率 n {displaystyle n,!} 是光速 c {displaystyle c,!} 与电磁波传播于介质的速度 v {displaystyle v,!} 的比例:按照波长长短,从长波开始,电磁波可以分类为无线电波、微波、红外线、可见光、紫外线、X-射线和伽马射线等等。普通实验使用的光谱仪就足以分析从2  奈米到2500 奈米波长的电磁波。使用这种仪器,可以得知物体、气体或甚至恒星的详细物理性质。这是天文物理学的必备仪器。例如,因为超精细分裂,氢原子会发射波长为21.12公分的无线电波。人类眼睛可以观测到波长大约在400 奈米和700  奈米之间的电磁波,称为‘可见光’。每一种电极性分子,会对应着某些特定频率的微波,使得电极性分子随着振荡电场一起旋转,这机制称为电介质加热(dielectric heating)。由于这种机制(不是热传导机制),电极性分子会吸收微波的能量。微波炉就是应用这运作原理,通过水分子的旋转,更均匀地将食物加热,减少等候时间。麦克斯韦方程组可以描述电磁波的普遍物理现象。在自由空间里,源项目等于零(源电荷等于零,源电流等于零)。除了没有任何事发生的解以外(电场和磁场都等于零),方程仍旧允许不简单的解,电场和磁场随着时间和位置变化。采用国际单位制,处于自由空间状况的麦克斯韦方程组表达为其中, E {displaystyle mathbf {E} ,!} 是电场, B {displaystyle mathbf {B} ,!} 是磁场, ϵ 0 {displaystyle epsilon _{0},!} 是真空电容率, μ 0 {displaystyle mu _{0},!} 是真空磁导率。满足上述条件的一个解是 E = B = 0 {displaystyle mathbf {E} =mathbf {B} =mathbf {0} ,!} ,然而这是一个平庸解,并没有什么有意思的物理意义。若想得到有意思的解答,必须稍做一些运算。取公式(2)的旋度,应用一个矢量恒等式,再将公式(1)代入,则可得到:应用公式(4),公式(5)右边变为将公式(6)和(7)代回公式(5),可以得到电场的波动方程:使用类似的方法,可以得到磁场的波动方程:这两个方程就是真空的电磁波方程,描述传播于真空的电磁波。更简易地表达,其中, ◻ = ∇ 2 − 1 v 0 2 ∂ 2 ∂ t 2 {displaystyle Box =nabla ^{2}-{frac {1}{{v_{0}}^{2}}}{frac {partial ^{2}}{partial t^{2}}},!} 是达朗白算符, v 0 = 1 μ 0 ϵ 0 {displaystyle v_{0}={frac {1}{sqrt {mu _{0}epsilon _{0}}}},!} 是波动传播的速度。在自由空间里, v 0 {displaystyle v_{0},!} 是光速 c {displaystyle c,!} 。麦克斯韦方程组连结了三个基本物理量:真空电容率 ϵ 0 {displaystyle epsilon _{0},!} 、真空磁导率 μ 0 {displaystyle mu _{0},!} 和光速 c {displaystyle c,!} 。这组关系是在麦克斯韦的电动力学发展之前就由威廉·爱德华·韦伯与鲁道夫·科尔劳施发现,但麦克斯韦是首个创造与波在光速传播相一致的场论的人。前面已经找到了两个方程。但是麦克斯韦方程组有四个方程,所以,还有很多重要的讯息隐藏在这个方程里。思考一个一般的电场矢量波动的解,其中, E 0 {displaystyle mathbf {E} _{0},!} 是常数振幅, f ( . . . ) {displaystyle f(...),!} 是任意二次可微函数, k {displaystyle mathbf {k} ,!} 是波矢, r 0 {displaystyle mathbf {r} _{0},!} 是位置矢量, ω {displaystyle omega ,!} 是角频率。波动方程 ◻ f = 0 {displaystyle Box mathbf {f} =0,!} 的通解是 f ( k ⋅ r − ω t ) {displaystyle fleft(mathbf {k} cdot mathbf {r} -omega tright),!} 。也就是说,将电场的公式代入公式(1):只要电场垂直于波矢(波动传播的方向),这函数形式的电场必定满足麦克斯韦方程组:再将电场的公式代入公式(2):所以,电场与其对应磁场的关系为:在自由空间内,电磁波不只是有以光速传播的性质,电磁波的电场部分和磁场部分有特定的相对定向、相对大小。它们之间的相位一样。电场,磁场,波动传播的方向,都互相垂直于对方。波动传播的方向是 E × B {displaystyle mathbf {E} times mathbf {B} ,!} 。从电磁波传播的方向看去,电场或许是以上下的方式震荡,而磁场以左右的方式震荡。但若将这图样旋转90度,则电场以左右的方式震荡,而磁场以上下的方式震荡,而波动传播的方向仍旧相同。这是波动方程的另一种解答。对于波动同样传播的方向,这定向的任意性现象称为偏振。

相关

  • 4s22, 8, 8, 2蒸气压第一:589.8 kJ·mol−1 第二:1145.4 kJ·mol−1 第三:4912.4 kJ·mol−1 (主条目:钙的同位素钙(Calcium)是一种化学元素。其化学符号是Ca,原子序数是20。钙
  • BNE西班牙国家图书馆(西班牙语:Biblioteca Nacional de España)是西班牙的国家图书资讯机构,也是西班牙最大的图书馆,位于马德里的雷科莱托斯大道。1712年,西班牙国王腓力五世创建了
  • 烟灰缸烟灰缸,是一个盛载烟灰、烟头的器皿,形状似一个开口碗、有盖的盒、邮箱,或者垃圾桶等。烟灰缸用料为耐燃物料,包括石、瓦、金属等。礼品公司不少利用烟灰缸表面作广告宣传。在禁
  • 小托马斯·弗兰西斯小托马斯·弗兰西斯(英语:Thomas Francis Jr.,1900年7月15日-1969年10月1日),美国医生,病毒学家与流行病学家。弗兰西斯是第一位在美国分离出流感病毒的科学家,在1940年发现了另一种
  • 羟基化羟基化(法语:Hydroxylation,也称羟化)是向分子引入羟基(-OH)的过程。常指用羟基取代碳上的氢原子(-H)的反应。产物是醇、酚等。生化中,催化羟化反应的酶称为羟化酶。←氨基酸二级结构→
  • 脱氧糖脱氧糖(英语:Deoxy sugars)是指糖分子中有一个羟基被氢原子所替代的糖。例子包括:果聚糖:菊粉 · 果聚糖β2→6甘露聚糖:低聚木糖:半乳聚糖:
  • 喜帕恰斯喜帕恰斯(ίππαρχος,Hipparkhos,约前190年-前120年),或译希帕求斯、伊巴谷、依巴谷,古希腊的天文学家,有“方位天文学之父”之称。公元前134年,他绘制出包含1025颗恒星的星图,
  • 查士丁尼法典《民法大全》(Corpus Juris(亦作Iuris) Civilis),又称《查士丁尼法典》或《国法大全》,是东罗马帝国皇帝查士丁尼一世下令编纂的一部汇编式法典,完成于公元529至565年。严格来说,《
  • ↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或
  • 蒂姆·伯纳斯-李蒂莫西·约翰·伯纳斯-李爵士,OM KBE FRS FREng FRSA FBCS(英语:Sir Timothy John Berners-Lee,1955年6月8日-),昵称为蒂姆·伯纳斯-李(英语:Tim Berners-Lee),英国计算机科学家。他是