量子测量

✍ dations ◷ 2025-10-20 15:07:21 #量子测量
在量子力学之中,所谓的“测量”需要有较严谨的定义,而特别称之为量子测量。量子测量不同于一般经典力学中的测量,量子测量会对被测量子系统产生影响,比如改变被测量子系统的状态;处于相同状态的量子系统被测量后可能得到完全不同的结果,这些结果符合一定的概率分布。量子测量是量子力学解释体系的核心问题,而量子力学的解释目前还没有统一的结论。与经典物理中的测量不同,量子测量不是独立于所观测的物理系统而单独存在的,相反,测量本身即是物理系统的一部分,所作的测量会对系统的状态产生干扰。量子公设的第三条是对测量下的定义。量子测量可以通过一个测量算符的集合 { M m } {displaystyle {M_{m}}} 来表示,它作用在系统的状态空间上。测量算符 M {displaystyle M} 的序列号 m {displaystyle m} 表示测量所得出的不同结果。如果系统在测量前处于状态 | ψ ⟩ {displaystyle |psi rangle } ,那么测量后得到结果m的概率是:测量后系统的状态变为:测量算符必须满足以下的完备性条件:上述完备性条件与下式等价,即完备性条件决定了测量得到各个结果的概率和为1:射影测量(projective measurement)是一般形式量子测量的一个特例,即测量算子集合是一组射影算子 { P m } {displaystyle {P_{m}}} 的情况,值得注意的是很多介绍量子力学的书比如Griffiths(2005)只介绍射影测量,这种测量结合量子系统的演化(evolution)与一般形式测量等价。对于射影测量,可以定义可观测量(observable) M {displaystyle M} 使得其中的射影算子 P m {displaystyle P_{m}} 的定义为:{ | i ⟩ } {displaystyle {|irangle }} 构成被测量子系统状态空间的某个子空间 W {displaystyle W} 的一组基矢量,射影算子 P {displaystyle P} 可以将一个状态矢量投影到该子空间 W {displaystyle W} ,因此得名射影算子。显然射影算子有以下性质:于是射影测量测得结果 m {displaystyle m} 的概率为:测量后量子系统的状态为射影测量的结果的平均值一般计为:一个量子比特 | ψ ⟩ = a | 0 ⟩ + b | 1 ⟩ {displaystyle |psi rangle =a|0rangle +b|1rangle } 被 { M m } = { M 0 , M 1 } {displaystyle {M_{m}}={M_{0},M_{1}}} 测量,所谓量子比特可以认为是一个二维量子系统的状态,比如一个光子的极化状态(英语:Photon polarization)。测量得到0和1的概率分别是 | a | 2 {displaystyle |a|^{2}} 和 | b | 2 {displaystyle |b|^{2}} ,而即概率和为1可以发现测量后,系统的状态要么变成 a | a | | 0 ⟩ {displaystyle {frac {a}{|a|}}|0rangle } 要么变成 b | b | | 1 ⟩ {displaystyle {frac {b}{|b|}}|1rangle } ,而对于量子力学来说,量子状态的相位是没有意义的,因而系统的状态在测量之后不是 | 0 ⟩ {displaystyle |0rangle } 就是 | 1 ⟩ {displaystyle |1rangle } ,即投影到了基矢量 | 0 ⟩ {displaystyle |0rangle } 或 | 1 ⟩ {displaystyle |1rangle } 构成的状态空间中去,显然 | 0 ⟩ {displaystyle {|0rangle }} 或 | 1 ⟩ {displaystyle |1rangle } 只能构成一个一维状态空间。一般来讲测量不是幺正算符,而是从系统里获取信息的一个过程。量子力学中,可观测量在数学上常以厄米算符(Hermitian)或自伴算符来表示。此算符的本征值集合代表测量可能结果的集合。对于每个本征值而言,存在有一个对应的本征态(或本征矢量),其为系统在测量之后的状态。这种表征具有一些特质:重要的例子有:算符可以是非对易性(或称非交换性)的。在有限维度的例子,如果两个厄米算符拥有相同的归一化的本征矢量集合,则它们可以对易。非对易的两个可观测量被称为“不相容”(incompatible)而无法同时测量。比较知名的例子是位置与动量,也可以透过海森堡不确定原理来描述。在量子退相干于二十世纪末出现之前,量子力学及哥本哈根诠释一直存在一个重大的观念性问题。那就是没有一个明确的判据来判别怎样的物理相互作用属于“测量”并且会造成波函数崩溃。薛定谔的猫即是最好的例子。现在,对于弱测量的了解以及什么程度的相互作用或测量足以摧毁量子相干性有了定量的分析,因此在量子退相干理论的架构下,一些问题已经可以被理解。但对于构成测量的一些面向,物理学家仍然没有一致的认同。测量是否决定一个状态在不同的量子诠释下有不同的答案。(这也与对波函数崩溃的理解有很大的关联。)举例来说,在哥本哈根诠释大多数的版本中,测量会决定一个系统的状态,并且在测量后系统的态一定是测量中得到的。但根据多世界诠释,测量在不同的世界有不同的结果,所以测量后其他的可能状态仍然存于不同的世界中。一般一致认为量子力学的测量显现出随机的特性,但这究竟是本质上的随机,或只是看似随机,则仍然没有定论。量子力学背后可能存在隐变数理论,以决定性的方式,在特定的安排方式下,使实验结果看似随机。隐变数理论如果存在,将会是“非定域性的”。这仍是热门的研究领域之一。定域性原理要求任何信息皆不能以超越光速的速度传递(详见狭义相对论)。实验上我们知道,如果量子力学是决定性的(借由隐变数理论),那么它必须是非定域性的,因此违反定域性原理(详见贝尔定理、EPR佯谬)。然而,物理学家对于量子力学是非决定性、非定域性或著两者皆是,仍然没有定论。

相关

  • 超氧化物歧化酶超氧化物歧化酶(英语:superoxide dismutase,缩写SOD)是一种能够催化超氧化物通过歧化反应转化为氧气和过氧化氢的酶。它广泛存在于各类动物、植物、微生物中,是一种重要的抗氧化
  • 鸟类生理解剖学鸟类生理解剖学,或称鸟类躯体生理学,通常研究的是鸟类所独有的适应特征,这些特征通常都是为了适应飞行所需。鸟类通常拥有轻盈的骨架、轻且强壮的肌肉、能支撑高速新陈代谢和氧
  • 椎间盘椎间盘是连接相邻两个椎体的纤维软骨盘(第1及第2颈椎之间,还有尾椎之间没有椎间盘)使脊椎可以在相当的角度之间活动,有如避震器的功能。成人共有23个椎间盘。椎间盘对脊柱、大脑
  • 对二甲苯对二甲苯(英语:p-Xylene)是苯的衍生物,重要的化工原料。对二甲苯分子式是C8H10 或 C6H4(CH3)2。它的名称可缩写为“PX”,其中英文字母“P”是“para”的缩写,意为“对位”。对二甲
  • 偶氮化合物偶氮化合物是一类含氮有机化合物,通式为R-N=N-R',R/R'为有机基团,可以是芳基或烷基。N=N称为偶氮基。若R/R'都为氢,则成为二亚胺(HN=NH)。以芳香族偶氮化合物最为稳定,也最为常用,π
  • P-术语防范说明是全球化学品统一分类和标签制度(GHS)的一部分。它们旨在形成一套标准化的短语,提供有关正确处理化学物质和混合物的建议,这些建议可以翻译成不同的语言。 因此,它们与众
  • 木炭木炭是木材或木质原料经过不完全燃烧或者在隔绝空气的条件下热解的产物之一,主要成分是碳,通常为深褐色或黑色多孔固体,一般用于燃料炭。与木材相比,木炭无明火,易燃,无烟,热值高,是
  • 2-丁醇仲丁醇(IUPAC名:2-丁醇)为二级醇,其分子式为CH3CH(OH)CH2CH3。仲丁醇是易燃的无色液体,在水中有中等的溶解度,也可以和常见的极性有机溶剂完全互溶,例如醚类和其他醇类。工业制程上
  • 几何-调和两个正实数x和y的几何-调和平均数定义如下:首先计算x的y几何平均数,称其为g1。然后计算x的y调和平均数,称其为h1.然后重复这个步骤,这样便得到了两个数列(gn)和(hn):这两个数列收
  • 文化人类学体质人类学 文化人类学 语言人类学 分子人类学 社会人类学 考古学应用人类学 民族志 参与观察 文化相对论文化 • 社会 史前史 • 人类演化 亲属 婚姻 • 家庭 物质文化 种