因果结构

✍ dations ◷ 2025-04-02 10:50:27 #洛伦兹流形,相对论,广义相对论,理论物理

在数学物理学中,洛伦兹流形的因果结构是指流形中两点间的因果关系。

在现代物理学(特别是广义相对论)中,时空是用洛伦兹流形表示的。流形中两点之间的因果关系可以用来描述时空中哪些事件可以影响到其他的哪些事件。

闵可夫斯基时空是洛伦兹流形的简单代表。由于闵可夫斯基时空是平直的,因而其中两点之间的因果关系非常容易表示。

任意洛伦兹流形(可能是弯曲的)的因果结构由于曲率的存在会较为复杂。对于这些流形中的因果结构的讨论就得从有邻点对的光滑曲线的角度来描述:首先讨论曲线切向量的各种情况,然后给出因果关系的定义。

如果 ( M , g ) {\displaystyle \,(M,g)} 是一个洛伦兹流形(流形 M {\displaystyle M} 的度规为 g {\displaystyle g} ),那么这个流形上任意点的切向量 X {\displaystyle X} 就可以分为下属三种情况:

(度规的符号数(英语:metric signature)为 ( , + , + , + , ) {\displaystyle (-,+,+,+,\cdots )} )。如果一个切向量是零向量或类时向量,那么它就是“非类空向量”。这里对各种切向量的命名方式是从闵可夫斯基时空中的情况推广而来的。

M {\displaystyle M} 中任意点的切空间中的类时切向量可以分为两类。在此之前需要先定义两个类时切向量的等价关系。

如果 X {\displaystyle X} Y {\displaystyle Y} 是一个点的两个类时切向量,那么在 g ( X , Y ) < 0 {\displaystyle \,g(X,Y)<0} 时, X {\displaystyle X} Y {\displaystyle Y} 是等价的(记作 X Y {\displaystyle X\sim Y} )。

此时有两个等价类可以包含这个点上的所有类时向量。其中一个可以称作“指向未来”,另一个则可称作“指向过去”。从物理意义上说,指定指向未来与指向过去的类时向量就是在选择这个点的时间箭头。指向未来类与指向过去类的定义可以通过连续性延伸到零向量。

那么如果在整个流形上都可以连续地给出非类空向量“指向未来”与“指向过去”的定义,这个洛伦兹流形就是时间可定向的 。

M {\displaystyle M} 中的“路径”是指 R {\displaystyle \mathbb {R} } 中的连续映射 μ : Σ M {\displaystyle \mu :\Sigma \to M} (其中 Σ {\displaystyle \Sigma } 是一个非退化区间,也就是包含多于一个点的连通集)。“光滑”路径 μ {\displaystyle \mu } 可以进行一定阶的微分(通常是 C {\displaystyle C^{\infty }} ),而“正常”路径有非零导数。

M {\displaystyle M} 中的“曲线”是指路径的图像,或者更准确来说是通过再参数化给出的路径-图像等价类,也就是 Σ {\displaystyle \Sigma } 的同胚或微分同胚。当 M {\displaystyle M} 是时间可定向的时候,曲线在参数变化单调时就是“有朝向的”。

M {\displaystyle M} 中的光滑正常曲线(或路径)可以依据它们的切向量分类:

Σ {\displaystyle \Sigma } 的正则性与非退化性确保所有时空中不会自然地存在闭合的因果曲线(比如由单独一点组成的因果曲线)。

如果流形可时间定向,那么非类空曲线还可以依据它们的时间朝向进一步分类:

下面定义只能用于因果曲线(即时序曲线或零曲线),因为只有类时向量与零向量才能给定时间指向:

M {\displaystyle M} 流形中的两个点 x {\displaystyle x} y {\displaystyle y} 有以下几类因果关系:

这些关系是可以传递的:

且满足

对于流形 M {\displaystyle M} 中的一点 x {\displaystyle x} 可以定义:

类似还可以定义:

x {\displaystyle x} 可以通过一条指向未来的类时曲线到达 I + ( x ) {\displaystyle \,I^{+}(x)} 中的任意点。类似地,还可以从 J ( x ) {\displaystyle \,J^{-}(x)} 中任意点通过一条指向未来的非类空曲线到达 x {\displaystyle x}

在闵可夫斯基时空中, I + ( x ) {\displaystyle \,I^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点组成的集合,而 J + ( x ) {\displaystyle \,J^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点及光锥上的点组成的集合。

M {\displaystyle M} 中任意 x {\displaystyle x} I + ( x ) {\displaystyle I^{+}(x)} I ( x ) {\displaystyle I^{-}(x)} J + ( x ) {\displaystyle J^{+}(x)} 以及 J ( x ) {\displaystyle J^{-}(x)} 就是 M {\displaystyle M} 的因果结构。

对于 M {\displaystyle M} 的子集 S {\displaystyle S} 可以定义:

对于 M {\displaystyle M} 的两个子集 S {\displaystyle S} T {\displaystyle T} 可以定义:

因果结构还存在以下性质

还具有以下拓扑学性质:

两个度规 g {\displaystyle \,g} g ^ {\displaystyle {\hat {g}}} 在对实函数 Ω {\displaystyle \Omega } (共形因子)存在 g ^ = Ω 2 g {\displaystyle {\hat {g}}=\Omega ^{2}g} 时是共形相关的。

考察对类时(零或类空)切向量的定义,可以得到无论使用 g {\displaystyle \,g} 还是 g ^ {\displaystyle {\hat {g}}} 时,它们不会发生改变。比如,切向量 X {\displaystyle X} 在使用度规 g {\displaystyle \,g} 时是类时的,也就是说 g ( X , X ) < 0 {\displaystyle \,g(X,X)<0} ,那么 g ^ ( X , X ) = Ω 2 g ( X , X ) < 0 {\displaystyle {\hat {g}}(X,X)=\Omega ^{2}g(X,X)<0} 。因此 X {\displaystyle X} 在使用度规 g ^ {\displaystyle {\hat {g}}} 时也是类时的。

由此可以得到,一个洛伦兹流形的因果结构不受共形变换的影响。

相关

  • 洁食符合犹太教教规的食物(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Ts
  • 线粒体膜转运蛋白线粒体膜转运蛋白质一般简称为“线粒体膜转运蛋白”,是位于线粒体膜中的蛋白质的统称。这些转运蛋白被用于转运各种分子和离子进出线粒体。它们以通过调节离子等化学物质在线
  • 迪特·拉姆斯迪特·拉姆斯(德语:Dieter Rams,1932年5月20日-)为著名德国工业设计师,出生于德国黑森邦威斯巴登市,与德国家电制造商百灵(博朗)(Braun)和机能主义设计学派有很密切的关系。自1943年至1
  • 内部网内部网(Intranet),又称企业内部网或内联网,是指采用因特网技术的计算机网络,它以TCP/IP协议作为基础,以Web为核心应用构成统一和便利的信息交换平台,例如文件传输、文件管理、电子
  • 硫氧化氢硫氧化氢,又称巯氧化氢(英语:hydrogen thioperoxide),是一种无机化合物,其化学式为H2SO,亦可计为H2OS、SOH2或HOSH,其结构类似于过氧化氢与二硫化氢。硫氧化氢具有类似硫化氢的难闻
  • 国际足联世界杯决赛列表国际足联世界杯(英语:FIFA World Cup),是由国际足球联合会于1930年成立的一项足球比赛,国际足球联合会成员国的男子国家足球队有资格参加。赛事除了1942年和1946年因第二次世界大
  • 未予评估未予评估(Not evaluated,或缩写为NE)是一种适用于世界自然保护联盟红色名录的保护现状。该物种/亚种尚未被国际自然保护联盟研究或评估过,或暂被视为不需急着被关注而先将资源投
  • 肖杰 (数学家)肖杰(1962年5月2日-),男,安徽定远人,中国数学家,现任清华大学数学科学系教授、博士生导师。1982年7月毕业于安徽师范大学数学系,1982年9月至1985年7月在北京师范大学数学系攻读硕士
  • 雷波小檗雷波小檗(学名:)为小檗科小檗属下的一个种。
  • 威廉·格奥尔基耶维奇·柯诺宁威廉·格奥尔基耶维奇·柯诺宁(俄语:Вильгельм Георгиевич Кно́рин;拉脱维亚语:Vilhelms Vilis Knoriņš;1890年8月29日(17日)-1938年7月29日),曾任白俄罗