因果结构

✍ dations ◷ 2025-05-19 19:55:28 #洛伦兹流形,相对论,广义相对论,理论物理

在数学物理学中,洛伦兹流形的因果结构是指流形中两点间的因果关系。

在现代物理学(特别是广义相对论)中,时空是用洛伦兹流形表示的。流形中两点之间的因果关系可以用来描述时空中哪些事件可以影响到其他的哪些事件。

闵可夫斯基时空是洛伦兹流形的简单代表。由于闵可夫斯基时空是平直的,因而其中两点之间的因果关系非常容易表示。

任意洛伦兹流形(可能是弯曲的)的因果结构由于曲率的存在会较为复杂。对于这些流形中的因果结构的讨论就得从有邻点对的光滑曲线的角度来描述:首先讨论曲线切向量的各种情况,然后给出因果关系的定义。

如果 ( M , g ) {\displaystyle \,(M,g)} 是一个洛伦兹流形(流形 M {\displaystyle M} 的度规为 g {\displaystyle g} ),那么这个流形上任意点的切向量 X {\displaystyle X} 就可以分为下属三种情况:

(度规的符号数(英语:metric signature)为 ( , + , + , + , ) {\displaystyle (-,+,+,+,\cdots )} )。如果一个切向量是零向量或类时向量,那么它就是“非类空向量”。这里对各种切向量的命名方式是从闵可夫斯基时空中的情况推广而来的。

M {\displaystyle M} 中任意点的切空间中的类时切向量可以分为两类。在此之前需要先定义两个类时切向量的等价关系。

如果 X {\displaystyle X} Y {\displaystyle Y} 是一个点的两个类时切向量,那么在 g ( X , Y ) < 0 {\displaystyle \,g(X,Y)<0} 时, X {\displaystyle X} Y {\displaystyle Y} 是等价的(记作 X Y {\displaystyle X\sim Y} )。

此时有两个等价类可以包含这个点上的所有类时向量。其中一个可以称作“指向未来”,另一个则可称作“指向过去”。从物理意义上说,指定指向未来与指向过去的类时向量就是在选择这个点的时间箭头。指向未来类与指向过去类的定义可以通过连续性延伸到零向量。

那么如果在整个流形上都可以连续地给出非类空向量“指向未来”与“指向过去”的定义,这个洛伦兹流形就是时间可定向的 。

M {\displaystyle M} 中的“路径”是指 R {\displaystyle \mathbb {R} } 中的连续映射 μ : Σ M {\displaystyle \mu :\Sigma \to M} (其中 Σ {\displaystyle \Sigma } 是一个非退化区间,也就是包含多于一个点的连通集)。“光滑”路径 μ {\displaystyle \mu } 可以进行一定阶的微分(通常是 C {\displaystyle C^{\infty }} ),而“正常”路径有非零导数。

M {\displaystyle M} 中的“曲线”是指路径的图像,或者更准确来说是通过再参数化给出的路径-图像等价类,也就是 Σ {\displaystyle \Sigma } 的同胚或微分同胚。当 M {\displaystyle M} 是时间可定向的时候,曲线在参数变化单调时就是“有朝向的”。

M {\displaystyle M} 中的光滑正常曲线(或路径)可以依据它们的切向量分类:

Σ {\displaystyle \Sigma } 的正则性与非退化性确保所有时空中不会自然地存在闭合的因果曲线(比如由单独一点组成的因果曲线)。

如果流形可时间定向,那么非类空曲线还可以依据它们的时间朝向进一步分类:

下面定义只能用于因果曲线(即时序曲线或零曲线),因为只有类时向量与零向量才能给定时间指向:

M {\displaystyle M} 流形中的两个点 x {\displaystyle x} y {\displaystyle y} 有以下几类因果关系:

这些关系是可以传递的:

且满足

对于流形 M {\displaystyle M} 中的一点 x {\displaystyle x} 可以定义:

类似还可以定义:

x {\displaystyle x} 可以通过一条指向未来的类时曲线到达 I + ( x ) {\displaystyle \,I^{+}(x)} 中的任意点。类似地,还可以从 J ( x ) {\displaystyle \,J^{-}(x)} 中任意点通过一条指向未来的非类空曲线到达 x {\displaystyle x}

在闵可夫斯基时空中, I + ( x ) {\displaystyle \,I^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点组成的集合,而 J + ( x ) {\displaystyle \,J^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点及光锥上的点组成的集合。

M {\displaystyle M} 中任意 x {\displaystyle x} I + ( x ) {\displaystyle I^{+}(x)} I ( x ) {\displaystyle I^{-}(x)} J + ( x ) {\displaystyle J^{+}(x)} 以及 J ( x ) {\displaystyle J^{-}(x)} 就是 M {\displaystyle M} 的因果结构。

对于 M {\displaystyle M} 的子集 S {\displaystyle S} 可以定义:

对于 M {\displaystyle M} 的两个子集 S {\displaystyle S} T {\displaystyle T} 可以定义:

因果结构还存在以下性质

还具有以下拓扑学性质:

两个度规 g {\displaystyle \,g} g ^ {\displaystyle {\hat {g}}} 在对实函数 Ω {\displaystyle \Omega } (共形因子)存在 g ^ = Ω 2 g {\displaystyle {\hat {g}}=\Omega ^{2}g} 时是共形相关的。

考察对类时(零或类空)切向量的定义,可以得到无论使用 g {\displaystyle \,g} 还是 g ^ {\displaystyle {\hat {g}}} 时,它们不会发生改变。比如,切向量 X {\displaystyle X} 在使用度规 g {\displaystyle \,g} 时是类时的,也就是说 g ( X , X ) < 0 {\displaystyle \,g(X,X)<0} ,那么 g ^ ( X , X ) = Ω 2 g ( X , X ) < 0 {\displaystyle {\hat {g}}(X,X)=\Omega ^{2}g(X,X)<0} 。因此 X {\displaystyle X} 在使用度规 g ^ {\displaystyle {\hat {g}}} 时也是类时的。

由此可以得到,一个洛伦兹流形的因果结构不受共形变换的影响。

相关

  • 肿瘤新生物、息肉、瘜肉或赘生物(英语:neoplasm),是指身体细胞组织不正常的增生,当生长的数量庞大,便会成为肿瘤(英语:tumor)。而肿瘤亦可以是良性或恶性的。肿瘤(英语:tumor)在医学上是指细
  • 博尔济吉特氏寿康太妃(1599-1665年),科尔沁博尔济吉特氏。《钦定外藩蒙古回部王公表传》显示她是成吉思汗二弟哈卜图哈萨尔的后裔。科尔沁左翼前旗炳图郡王孔果尔之女,纳穆赛之孙女。清太祖之
  • T·柯林·坎贝尔宾州州立大学兽医学院兽医预科学士(1956) 乔治亚大学兽医学硕士 (1958), 康乃尔大学营养及生化学哲学博士(1961), biochemistry, nutrition, and microbiology, Cornell
  • 禹王台禹王台位于河南省开封市城外东南方,占地400多亩,是古代梁园的遗址。禹王台又称古吹台,传说春秋时期晋国有一位双目失明的音乐家名叫师旷,他的音乐造诣很深,是晋平公驾下的一名乐
  • 信号处理在计算机科学、药物分析、电子学等学科中,信号处理(英语:signal processing)是指对信号表示、变换、运算等进行处理的过程。信号处理可以用于沟通人类之间,或人与机器之间的联系;
  • 伦弗鲁郡伦弗鲁郡(英语:Renfrewshire;苏格兰盖尔语:),是英国苏格兰32个一级行政区之一。虽然面积很小,但是地处苏格兰第一大城市格拉斯哥西南,人口密集,交通繁忙。面积261km²,人口173,900(2013
  • 撞角撞角,又名冲角,是一种海战武器,安装在军舰上,对敌舰实施撞击战术。撞角曾经在古代海军舰艇上得到普遍应用。随着舰载火炮的发展,撞角开始没落。十九世纪的铁甲舰时代初期,因当时的
  • Bechgaard盐Bechgaard盐是一类在低温下具超导性的电荷迁移配合物的统称,它得名于丹麦化学家Klaus Bechgaard。多数Bechgaard盐的转变温度都较低,在1-2K以上失去超导性。最高的转变温度可
  • 燕麦饼燕麦饼(英语:Oatcake)是一种类似脆饼或饼干的面饼,有些种类比较像美式松饼。以燕麦片为主要材料,有时也会添加中筋或全麦面粉。 可以用平板炉 或烤炉烹调。早在公元43年,罗马征服
  • 凯琳·奥斯蒙德凯琳·奥斯蒙德(Kaetlyn Osmond,1995年12月5日-)是一位加拿大女子花样滑冰选手。她在2014年冬季奥林匹克运动会花样滑冰比赛-团体获得了银牌,2018年冬季奥林匹克运动会花样滑冰团