因果结构

✍ dations ◷ 2025-09-10 13:14:53 #洛伦兹流形,相对论,广义相对论,理论物理

在数学物理学中,洛伦兹流形的因果结构是指流形中两点间的因果关系。

在现代物理学(特别是广义相对论)中,时空是用洛伦兹流形表示的。流形中两点之间的因果关系可以用来描述时空中哪些事件可以影响到其他的哪些事件。

闵可夫斯基时空是洛伦兹流形的简单代表。由于闵可夫斯基时空是平直的,因而其中两点之间的因果关系非常容易表示。

任意洛伦兹流形(可能是弯曲的)的因果结构由于曲率的存在会较为复杂。对于这些流形中的因果结构的讨论就得从有邻点对的光滑曲线的角度来描述:首先讨论曲线切向量的各种情况,然后给出因果关系的定义。

如果 ( M , g ) {\displaystyle \,(M,g)} 是一个洛伦兹流形(流形 M {\displaystyle M} 的度规为 g {\displaystyle g} ),那么这个流形上任意点的切向量 X {\displaystyle X} 就可以分为下属三种情况:

(度规的符号数(英语:metric signature)为 ( , + , + , + , ) {\displaystyle (-,+,+,+,\cdots )} )。如果一个切向量是零向量或类时向量,那么它就是“非类空向量”。这里对各种切向量的命名方式是从闵可夫斯基时空中的情况推广而来的。

M {\displaystyle M} 中任意点的切空间中的类时切向量可以分为两类。在此之前需要先定义两个类时切向量的等价关系。

如果 X {\displaystyle X} Y {\displaystyle Y} 是一个点的两个类时切向量,那么在 g ( X , Y ) < 0 {\displaystyle \,g(X,Y)<0} 时, X {\displaystyle X} Y {\displaystyle Y} 是等价的(记作 X Y {\displaystyle X\sim Y} )。

此时有两个等价类可以包含这个点上的所有类时向量。其中一个可以称作“指向未来”,另一个则可称作“指向过去”。从物理意义上说,指定指向未来与指向过去的类时向量就是在选择这个点的时间箭头。指向未来类与指向过去类的定义可以通过连续性延伸到零向量。

那么如果在整个流形上都可以连续地给出非类空向量“指向未来”与“指向过去”的定义,这个洛伦兹流形就是时间可定向的 。

M {\displaystyle M} 中的“路径”是指 R {\displaystyle \mathbb {R} } 中的连续映射 μ : Σ M {\displaystyle \mu :\Sigma \to M} (其中 Σ {\displaystyle \Sigma } 是一个非退化区间,也就是包含多于一个点的连通集)。“光滑”路径 μ {\displaystyle \mu } 可以进行一定阶的微分(通常是 C {\displaystyle C^{\infty }} ),而“正常”路径有非零导数。

M {\displaystyle M} 中的“曲线”是指路径的图像,或者更准确来说是通过再参数化给出的路径-图像等价类,也就是 Σ {\displaystyle \Sigma } 的同胚或微分同胚。当 M {\displaystyle M} 是时间可定向的时候,曲线在参数变化单调时就是“有朝向的”。

M {\displaystyle M} 中的光滑正常曲线(或路径)可以依据它们的切向量分类:

Σ {\displaystyle \Sigma } 的正则性与非退化性确保所有时空中不会自然地存在闭合的因果曲线(比如由单独一点组成的因果曲线)。

如果流形可时间定向,那么非类空曲线还可以依据它们的时间朝向进一步分类:

下面定义只能用于因果曲线(即时序曲线或零曲线),因为只有类时向量与零向量才能给定时间指向:

M {\displaystyle M} 流形中的两个点 x {\displaystyle x} y {\displaystyle y} 有以下几类因果关系:

这些关系是可以传递的:

且满足

对于流形 M {\displaystyle M} 中的一点 x {\displaystyle x} 可以定义:

类似还可以定义:

x {\displaystyle x} 可以通过一条指向未来的类时曲线到达 I + ( x ) {\displaystyle \,I^{+}(x)} 中的任意点。类似地,还可以从 J ( x ) {\displaystyle \,J^{-}(x)} 中任意点通过一条指向未来的非类空曲线到达 x {\displaystyle x}

在闵可夫斯基时空中, I + ( x ) {\displaystyle \,I^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点组成的集合,而 J + ( x ) {\displaystyle \,J^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点及光锥上的点组成的集合。

M {\displaystyle M} 中任意 x {\displaystyle x} I + ( x ) {\displaystyle I^{+}(x)} I ( x ) {\displaystyle I^{-}(x)} J + ( x ) {\displaystyle J^{+}(x)} 以及 J ( x ) {\displaystyle J^{-}(x)} 就是 M {\displaystyle M} 的因果结构。

对于 M {\displaystyle M} 的子集 S {\displaystyle S} 可以定义:

对于 M {\displaystyle M} 的两个子集 S {\displaystyle S} T {\displaystyle T} 可以定义:

因果结构还存在以下性质

还具有以下拓扑学性质:

两个度规 g {\displaystyle \,g} g ^ {\displaystyle {\hat {g}}} 在对实函数 Ω {\displaystyle \Omega } (共形因子)存在 g ^ = Ω 2 g {\displaystyle {\hat {g}}=\Omega ^{2}g} 时是共形相关的。

考察对类时(零或类空)切向量的定义,可以得到无论使用 g {\displaystyle \,g} 还是 g ^ {\displaystyle {\hat {g}}} 时,它们不会发生改变。比如,切向量 X {\displaystyle X} 在使用度规 g {\displaystyle \,g} 时是类时的,也就是说 g ( X , X ) < 0 {\displaystyle \,g(X,X)<0} ,那么 g ^ ( X , X ) = Ω 2 g ( X , X ) < 0 {\displaystyle {\hat {g}}(X,X)=\Omega ^{2}g(X,X)<0} 。因此 X {\displaystyle X} 在使用度规 g ^ {\displaystyle {\hat {g}}} 时也是类时的。

由此可以得到,一个洛伦兹流形的因果结构不受共形变换的影响。

相关

  • 淡水淡水,是水质中仅有微量溶解的氯化钠的水,是相对于海水或矿泉水的一种水体。大气降水、水汽凝结凝华、结晶水转化成自由水、火山爆发(存在争议)、彗星撞击。液态淡水和固态淡水,气
  • 辛糖辛糖(英语:Octose),又称为八碳糖,是由八个碳原子组成的单糖,化学式为 C8H16O8。例如:D-赤藓-L-半乳辛糖、D-甘油-D-甘露辛糖等。果聚糖:菊粉 · 果聚糖β2→6甘露聚糖:低聚木糖:半乳
  • 紫球藻紫球藻(Porphyridium cruentum)是一种红藻门红藻亚门单细胞藻类紫球藻属的藻类植物,是红藻门一种比较原始的品种,能够产生许多生物活性物质,如藻红蛋白、藻胆蛋白、多不饱和脂肪
  • 罗金汉第二代罗金汉侯爵查尔斯·沃森-文特沃斯,KG,PC,FRS(英语:Charles Watson-Wentworth, 2nd Marquess of Rockingham,1730年5月13日-1782年7月1日),英国辉格党政治家,1765年7月至1766年7
  • Apple IApple-I是一种早期的个人电脑,由斯蒂夫·沃兹尼亚克设计并手工打造。沃兹尼亚克的朋友史蒂夫·乔布斯则提出销售这台电脑的主意。Apple I是苹果公司的第一项产品,在1976年4月
  • 东波罗的人种东波罗的人种,又称为东欧人种或白海—波罗的海人种(White Sea-Baltic Race),是人类学家在20世纪提出的白人类型。这类型身材中等、体格强壮、头型短、面阔、重大的下颌骨、短鼻
  • 圣路加堂 (慕尼黑)圣路加堂(德语:)是德国慕尼黑的一座路德会教堂,兴建于1893-1896年,由阿尔伯特·施密特设计。 圣路加堂是慕尼黑唯一一座保存完好的新教老教堂。 坐标:48°08′6″N 11°35′14″E
  • 雅各布·毕格罗雅各布·毕格罗(Jacob Bigelow,1787年-1879年)为美国医生及植物学家。
  • 理查德·韦斯托尔理查德·韦斯托尔(英语:Richard Westall;1765年1月2日-1836年12月4日)是英国的一名画家,也是一名肖像、文学、历史的插图画家,较为著名的作品是乔治·戈登·拜伦的肖像画。他也是维
  • 头甲鱼属头甲鱼属(学名:)甲胄鱼的一属,属于骨甲鱼纲。大约生活在4亿1500万年前至3亿9800万年前。头甲鱼身长22厘米,具有外骨骼构成的头甲,但内骨骼可能完全没有骨化。眼位于扁平头部的背侧