因果结构

✍ dations ◷ 2025-07-19 07:04:27 #洛伦兹流形,相对论,广义相对论,理论物理

在数学物理学中,洛伦兹流形的因果结构是指流形中两点间的因果关系。

在现代物理学(特别是广义相对论)中,时空是用洛伦兹流形表示的。流形中两点之间的因果关系可以用来描述时空中哪些事件可以影响到其他的哪些事件。

闵可夫斯基时空是洛伦兹流形的简单代表。由于闵可夫斯基时空是平直的,因而其中两点之间的因果关系非常容易表示。

任意洛伦兹流形(可能是弯曲的)的因果结构由于曲率的存在会较为复杂。对于这些流形中的因果结构的讨论就得从有邻点对的光滑曲线的角度来描述:首先讨论曲线切向量的各种情况,然后给出因果关系的定义。

如果 ( M , g ) {\displaystyle \,(M,g)} 是一个洛伦兹流形(流形 M {\displaystyle M} 的度规为 g {\displaystyle g} ),那么这个流形上任意点的切向量 X {\displaystyle X} 就可以分为下属三种情况:

(度规的符号数(英语:metric signature)为 ( , + , + , + , ) {\displaystyle (-,+,+,+,\cdots )} )。如果一个切向量是零向量或类时向量,那么它就是“非类空向量”。这里对各种切向量的命名方式是从闵可夫斯基时空中的情况推广而来的。

M {\displaystyle M} 中任意点的切空间中的类时切向量可以分为两类。在此之前需要先定义两个类时切向量的等价关系。

如果 X {\displaystyle X} Y {\displaystyle Y} 是一个点的两个类时切向量,那么在 g ( X , Y ) < 0 {\displaystyle \,g(X,Y)<0} 时, X {\displaystyle X} Y {\displaystyle Y} 是等价的(记作 X Y {\displaystyle X\sim Y} )。

此时有两个等价类可以包含这个点上的所有类时向量。其中一个可以称作“指向未来”,另一个则可称作“指向过去”。从物理意义上说,指定指向未来与指向过去的类时向量就是在选择这个点的时间箭头。指向未来类与指向过去类的定义可以通过连续性延伸到零向量。

那么如果在整个流形上都可以连续地给出非类空向量“指向未来”与“指向过去”的定义,这个洛伦兹流形就是时间可定向的 。

M {\displaystyle M} 中的“路径”是指 R {\displaystyle \mathbb {R} } 中的连续映射 μ : Σ M {\displaystyle \mu :\Sigma \to M} (其中 Σ {\displaystyle \Sigma } 是一个非退化区间,也就是包含多于一个点的连通集)。“光滑”路径 μ {\displaystyle \mu } 可以进行一定阶的微分(通常是 C {\displaystyle C^{\infty }} ),而“正常”路径有非零导数。

M {\displaystyle M} 中的“曲线”是指路径的图像,或者更准确来说是通过再参数化给出的路径-图像等价类,也就是 Σ {\displaystyle \Sigma } 的同胚或微分同胚。当 M {\displaystyle M} 是时间可定向的时候,曲线在参数变化单调时就是“有朝向的”。

M {\displaystyle M} 中的光滑正常曲线(或路径)可以依据它们的切向量分类:

Σ {\displaystyle \Sigma } 的正则性与非退化性确保所有时空中不会自然地存在闭合的因果曲线(比如由单独一点组成的因果曲线)。

如果流形可时间定向,那么非类空曲线还可以依据它们的时间朝向进一步分类:

下面定义只能用于因果曲线(即时序曲线或零曲线),因为只有类时向量与零向量才能给定时间指向:

M {\displaystyle M} 流形中的两个点 x {\displaystyle x} y {\displaystyle y} 有以下几类因果关系:

这些关系是可以传递的:

且满足

对于流形 M {\displaystyle M} 中的一点 x {\displaystyle x} 可以定义:

类似还可以定义:

x {\displaystyle x} 可以通过一条指向未来的类时曲线到达 I + ( x ) {\displaystyle \,I^{+}(x)} 中的任意点。类似地,还可以从 J ( x ) {\displaystyle \,J^{-}(x)} 中任意点通过一条指向未来的非类空曲线到达 x {\displaystyle x}

在闵可夫斯基时空中, I + ( x ) {\displaystyle \,I^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点组成的集合,而 J + ( x ) {\displaystyle \,J^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点及光锥上的点组成的集合。

M {\displaystyle M} 中任意 x {\displaystyle x} I + ( x ) {\displaystyle I^{+}(x)} I ( x ) {\displaystyle I^{-}(x)} J + ( x ) {\displaystyle J^{+}(x)} 以及 J ( x ) {\displaystyle J^{-}(x)} 就是 M {\displaystyle M} 的因果结构。

对于 M {\displaystyle M} 的子集 S {\displaystyle S} 可以定义:

对于 M {\displaystyle M} 的两个子集 S {\displaystyle S} T {\displaystyle T} 可以定义:

因果结构还存在以下性质

还具有以下拓扑学性质:

两个度规 g {\displaystyle \,g} g ^ {\displaystyle {\hat {g}}} 在对实函数 Ω {\displaystyle \Omega } (共形因子)存在 g ^ = Ω 2 g {\displaystyle {\hat {g}}=\Omega ^{2}g} 时是共形相关的。

考察对类时(零或类空)切向量的定义,可以得到无论使用 g {\displaystyle \,g} 还是 g ^ {\displaystyle {\hat {g}}} 时,它们不会发生改变。比如,切向量 X {\displaystyle X} 在使用度规 g {\displaystyle \,g} 时是类时的,也就是说 g ( X , X ) < 0 {\displaystyle \,g(X,X)<0} ,那么 g ^ ( X , X ) = Ω 2 g ( X , X ) < 0 {\displaystyle {\hat {g}}(X,X)=\Omega ^{2}g(X,X)<0} 。因此 X {\displaystyle X} 在使用度规 g ^ {\displaystyle {\hat {g}}} 时也是类时的。

由此可以得到,一个洛伦兹流形的因果结构不受共形变换的影响。

相关

  • 睾丸炎睾丸炎是睾丸发生的一种炎症。 其症状与睾丸扭转很像,都会导致睾丸胀大、剧烈疼痛、反复感染和尿血。睾丸炎可能是由附睾炎传染而来的,有时候也会因性交而传染。布鲁氏菌病也
  • 马凡氏综合征马凡氏综合征(Marfan syndrome)为一种遗传性结缔组织疾病。马凡氏综合征为体染色体显性遗传,发生于FBN1基因(位于第15对,q21.1位置上),负责编码结缔蛋白原纤蛋白(fibrillin-1;一种
  • 职业职业(英语:job),是一种日常性的规律劳动,其目的在于换取劳动所得(也就是薪资),亦象征在社会上的地位和名誉等等。职场上的专门行业,是对劳动的分类。职业是社会分工的产物,西方商品经
  • Stramenopiles不等鞭毛总门(学名:Heterokonta)旧为不等鞭毛门,是真核生物的主要演化支之一,已知的下辖物种超过10万个物种,当中大多数属于藻类,从多细胞的大型藻类海带,到单细胞的各种浮游硅藻,这
  • 胶原螺旋结构 / ECOD在胶原蛋白中,胶原三螺旋(或称为2型螺旋)是其中的主要二级结构。它是由重复的氨基酸序列Gly-X-Y形成的三股螺旋(英语:triple helix),其中的X和Y常常是脯氨酸或羟脯氨酸
  • 美国爱护动物协会美国爱护动物协会(英语:American Society for the Prevention of Cruelty to Animals (ASPCA)),于1866年由亨利·柏格创立,成立初衷为改善马的待遇。总部位于纽约市,而捐款是来自
  • 自由恋爱主义自由恋爱主义(英语:Free love、日语:自由恋愛主義)是一场旨在接受所有形式的爱的社会运动。自由恋爱主义的最初目标是将国家与性相关事务(如婚姻、生育控制和通奸)分离开来。自由
  • 一氧化锰一氧化锰是锰的一种氧化物,化学式MnO,在自然界中以罕见的方锰矿(英语:manganosite)的形式存在。它在磁共振成像、电极材料制备等方面有着潜在应用。一氧化锰有着与氯化钠晶体相同
  • .im.im为英国海外属地马恩岛国家及地区顶级域(ccTLD)的域名。由于即时通讯的缩写为IM,有些即时通讯软件使用.im作为后缀,例如Pidgin, imo.im. 而又因IM可以表示I'm的含义,一些个人网
  • 贝尔法斯特协议《贝尔法斯特协议》(爱尔兰语:Comhaontú Bhéal Feirste;英语:Belfast Agreement),亦称《耶稣受难日协议》(爱尔兰语:Comhaontú Aoine an Chéasta;英语:Good Friday Agreement),偶而