因果结构

✍ dations ◷ 2025-06-09 02:33:37 #洛伦兹流形,相对论,广义相对论,理论物理

在数学物理学中,洛伦兹流形的因果结构是指流形中两点间的因果关系。

在现代物理学(特别是广义相对论)中,时空是用洛伦兹流形表示的。流形中两点之间的因果关系可以用来描述时空中哪些事件可以影响到其他的哪些事件。

闵可夫斯基时空是洛伦兹流形的简单代表。由于闵可夫斯基时空是平直的,因而其中两点之间的因果关系非常容易表示。

任意洛伦兹流形(可能是弯曲的)的因果结构由于曲率的存在会较为复杂。对于这些流形中的因果结构的讨论就得从有邻点对的光滑曲线的角度来描述:首先讨论曲线切向量的各种情况,然后给出因果关系的定义。

如果 ( M , g ) {\displaystyle \,(M,g)} 是一个洛伦兹流形(流形 M {\displaystyle M} 的度规为 g {\displaystyle g} ),那么这个流形上任意点的切向量 X {\displaystyle X} 就可以分为下属三种情况:

(度规的符号数(英语:metric signature)为 ( , + , + , + , ) {\displaystyle (-,+,+,+,\cdots )} )。如果一个切向量是零向量或类时向量,那么它就是“非类空向量”。这里对各种切向量的命名方式是从闵可夫斯基时空中的情况推广而来的。

M {\displaystyle M} 中任意点的切空间中的类时切向量可以分为两类。在此之前需要先定义两个类时切向量的等价关系。

如果 X {\displaystyle X} Y {\displaystyle Y} 是一个点的两个类时切向量,那么在 g ( X , Y ) < 0 {\displaystyle \,g(X,Y)<0} 时, X {\displaystyle X} Y {\displaystyle Y} 是等价的(记作 X Y {\displaystyle X\sim Y} )。

此时有两个等价类可以包含这个点上的所有类时向量。其中一个可以称作“指向未来”,另一个则可称作“指向过去”。从物理意义上说,指定指向未来与指向过去的类时向量就是在选择这个点的时间箭头。指向未来类与指向过去类的定义可以通过连续性延伸到零向量。

那么如果在整个流形上都可以连续地给出非类空向量“指向未来”与“指向过去”的定义,这个洛伦兹流形就是时间可定向的 。

M {\displaystyle M} 中的“路径”是指 R {\displaystyle \mathbb {R} } 中的连续映射 μ : Σ M {\displaystyle \mu :\Sigma \to M} (其中 Σ {\displaystyle \Sigma } 是一个非退化区间,也就是包含多于一个点的连通集)。“光滑”路径 μ {\displaystyle \mu } 可以进行一定阶的微分(通常是 C {\displaystyle C^{\infty }} ),而“正常”路径有非零导数。

M {\displaystyle M} 中的“曲线”是指路径的图像,或者更准确来说是通过再参数化给出的路径-图像等价类,也就是 Σ {\displaystyle \Sigma } 的同胚或微分同胚。当 M {\displaystyle M} 是时间可定向的时候,曲线在参数变化单调时就是“有朝向的”。

M {\displaystyle M} 中的光滑正常曲线(或路径)可以依据它们的切向量分类:

Σ {\displaystyle \Sigma } 的正则性与非退化性确保所有时空中不会自然地存在闭合的因果曲线(比如由单独一点组成的因果曲线)。

如果流形可时间定向,那么非类空曲线还可以依据它们的时间朝向进一步分类:

下面定义只能用于因果曲线(即时序曲线或零曲线),因为只有类时向量与零向量才能给定时间指向:

M {\displaystyle M} 流形中的两个点 x {\displaystyle x} y {\displaystyle y} 有以下几类因果关系:

这些关系是可以传递的:

且满足

对于流形 M {\displaystyle M} 中的一点 x {\displaystyle x} 可以定义:

类似还可以定义:

x {\displaystyle x} 可以通过一条指向未来的类时曲线到达 I + ( x ) {\displaystyle \,I^{+}(x)} 中的任意点。类似地,还可以从 J ( x ) {\displaystyle \,J^{-}(x)} 中任意点通过一条指向未来的非类空曲线到达 x {\displaystyle x}

在闵可夫斯基时空中, I + ( x ) {\displaystyle \,I^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点组成的集合,而 J + ( x ) {\displaystyle \,J^{+}(x)} 就是 x {\displaystyle x} 处未来光锥的内部点及光锥上的点组成的集合。

M {\displaystyle M} 中任意 x {\displaystyle x} I + ( x ) {\displaystyle I^{+}(x)} I ( x ) {\displaystyle I^{-}(x)} J + ( x ) {\displaystyle J^{+}(x)} 以及 J ( x ) {\displaystyle J^{-}(x)} 就是 M {\displaystyle M} 的因果结构。

对于 M {\displaystyle M} 的子集 S {\displaystyle S} 可以定义:

对于 M {\displaystyle M} 的两个子集 S {\displaystyle S} T {\displaystyle T} 可以定义:

因果结构还存在以下性质

还具有以下拓扑学性质:

两个度规 g {\displaystyle \,g} g ^ {\displaystyle {\hat {g}}} 在对实函数 Ω {\displaystyle \Omega } (共形因子)存在 g ^ = Ω 2 g {\displaystyle {\hat {g}}=\Omega ^{2}g} 时是共形相关的。

考察对类时(零或类空)切向量的定义,可以得到无论使用 g {\displaystyle \,g} 还是 g ^ {\displaystyle {\hat {g}}} 时,它们不会发生改变。比如,切向量 X {\displaystyle X} 在使用度规 g {\displaystyle \,g} 时是类时的,也就是说 g ( X , X ) < 0 {\displaystyle \,g(X,X)<0} ,那么 g ^ ( X , X ) = Ω 2 g ( X , X ) < 0 {\displaystyle {\hat {g}}(X,X)=\Omega ^{2}g(X,X)<0} 。因此 X {\displaystyle X} 在使用度规 g ^ {\displaystyle {\hat {g}}} 时也是类时的。

由此可以得到,一个洛伦兹流形的因果结构不受共形变换的影响。

相关

  • 人体测量学人体测量学是用测量和观察的方法描述人类体质特征状况的人类学分支学科。采用人类学常用的活体测量法来研究体育锻炼和运动训练对人体外部形态和体形的影响、运动员身体各部
  • B06A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码B06(其它血液学药剂)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO Coll
  • 上直肌上直肌(Superior rectus muscle)是眼窝里的肌肉,为眼外肌(英语:Extraocular muscles)的其中一块,受动眼神经(第三对脑神经)的上分支所支配。虽然上直肌有助于眼睛内旋与内收,不过当
  • 金弘集金弘集(1842年-1896年),字敬能,号道园、以政学斋,原名金宏集;本籍庆尚道庆州,谥号忠献(충헌),赠大提学,朝鲜王朝后期的政治人物,亲日派,俄馆播迁时被巡检处死。金弘集出身庆州金氏,是肃宗仁
  • 医科大学医学院是高等教育体制下的一个学院,课程安排主要是以培养和医学相关专门人才和研究人员为目的。医学院的科系和研究所,大致可分为临床医学和基础医学。临床医学部分包括了医学
  • 路易斯安那领地美国国旗(15星)路易斯安那领地 (英语:Territory of Louisiana),美国历史上的一个合并建制领土,存续时间为1805年7月4日至1812年6月4日。1812年6月4日更名为密苏里领地。
  • 平等权利修正案《平等权利修正案》(英语:Equal Rights Amendment,简称ERA)是美国宪法的一项修正案,旨在保障所有美国公民享有平等的合法权利,不分性别(男女两性),试图解决男女在离婚、财产、就业和
  • 西丽玛沃·班达拉奈克西丽玛沃·拉特瓦特·迪亚斯·班达拉奈克(Sirimavo Ratwatte Dias Bandaranaike,僧伽罗语:සිරිමාවෝ රත්වත්තේ ඩයස් බණ්ඩාරනායක,泰米尔语:சிறி
  • 中铁二院工程集团中铁二院工程集团有限责任公司,简称中铁二院,前身为铁道部第二勘测设计院,注册地位于成都,隶属于中国铁路工程集团的上市公司中国中铁。业务性质为勘察、设计、监理咨询。2017年
  • TWiT.tvTWiT直播网是TWiT LLC的商标名,它是由美国科技广播人兼作家Leo Laporte(英语:Leo Laporte)所主持的一个播客网。 在2005年4月,直播网开始运行,启动了“本周科技/This Week in Tech