球多极矩

✍ dations ◷ 2025-03-07 10:46:24 #电磁学,位势论

对于与源位置的距离呈反比的位势,其球多极展开所得到的系数称为球多极矩(Spherical multipole moments)。例如,电势、磁向量势、重力势等等,都是这种位势。

源位置为 r {\displaystyle \mathbf {r} ^{\prime }} 的点电荷 q {\displaystyle q} ,其电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 在场位置 r {\displaystyle \mathbf {r} }

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, γ {\displaystyle \gamma } r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} ^{\prime }} 之间的夹角。

假设 r < r {\displaystyle r'<r} ,场位置比源位置离原点更远,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} r / r {\displaystyle r^{\prime }/r} 的幂和勒壤得多项式展开为 :

应用球余弦定律(spherical law of cosine), cos γ {\displaystyle \cos \gamma } 表示为

这结果也可以直接用向量代数直接计算出来。

应用球谐函数加法定理, P ( cos γ ) {\displaystyle P_{\ell }(\cos \gamma )} 又表示为

其中, Y m {\displaystyle Y_{\ell m}} 是球谐函数。

将这方程式代入电势的方程式,可以得到

点电荷的“球多极矩” 定义为

则电势的方程式又可写为

假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} 可以以 r / r {\displaystyle r/r^{\prime }} 的幂和勒壤得多项式展开:

点电荷的“内部球多极矩”(前述的球多极矩称为外部球多极矩)定义为

则电势的方程式写为

前述多极展开方法可以推广至电荷密度分布。将点电荷 q {\displaystyle q} 改换为微小电荷元素 ρ ( r ) d r {\displaystyle \rho (\mathbf {r} ^{\prime })d\mathbf {r} ^{\prime }} ,然后积分,则可得到电势的方程式(假设 r < r {\displaystyle r'<r} ):

其中,电荷密度分布的球多极矩定义为 q m   = d e f   V ρ ( r ) ( r ) Y m ( θ , ϕ )   d 3 r {\displaystyle q_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}\rho (\mathbf {r} ^{\prime })\left(r^{\prime }\right)^{\ell }Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }} V {\displaystyle \mathbb {V} '} 是积分体积。

特别注意,由于电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 为实值,这展开式的复共轭也是同样正确的球多极展开式。然而,这样做会导致球多极矩的定义式含有 Y m {\displaystyle Y_{\ell m}} 项目,而不是其复共轭数 Y m {\displaystyle Y_{\ell m}^{*}} 。在某些领域,例如物理化学,这是一般常规。更详尽资料,请参阅条目分子多极矩(molecular multipole moment)。

类似地,假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则电势的方程式为

其中,电荷密度分布的内部球多极矩定义为 I m   = d e f   V ρ ( r ) Y m ( θ , ϕ ) ( r ) + 1   d 3 r {\displaystyle I_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ^{\prime })Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })}{\left(r^{\prime }\right)^{\ell +1}}}\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }}

两个互不重叠,同心的电荷分布可以用简单公式来描述。设定第一个电荷分布 ρ 1 {\displaystyle \rho _{1}} 在第二个电荷分布 ρ 2 {\displaystyle \rho _{2}} 的内部,则由 ρ 1 {\displaystyle \rho _{1}} 所产生的电势 Φ 1 {\displaystyle \Phi _{1}} ,因为作用于 ρ 2 {\displaystyle \rho _{2}} 而涉及的相互作用能 U {\displaystyle U}

电势 Φ 1 ( r ) {\displaystyle \Phi _{1}(\mathbf {r} )} 可以以外部球多极矩展开为

其中, q 1 m {\displaystyle q_{1\ell m}} 是第一个电荷分布的 m {\displaystyle \ell m} 外部球多极矩。

将这方程式代入相互作用能 U {\displaystyle U} 的方程式,可以得到

注意到其积分项目等于 ρ 2 ( r ) {\displaystyle \rho _{2}(\mathbf {r} ^{\prime })} 的内部球多极矩 I 2 m {\displaystyle I_{2\ell m}} 的复共轭数,相互作用能 U {\displaystyle U} 的方程式约化为简单形式

这方程式可以用来计算,原子核产生的电势因为与其周围的原子轨域耦合而涉及的相互作用能。反过来,给定相互作用能与电子轨域的内部球多极矩,则可以计算原子核的外部球多极矩,从而得知其形状。

假设电荷密度为“轴对称”,即与方位角 ϕ {\displaystyle \phi ^{\prime }} 无关,则球多极展开式的形式很简单。在 q m {\displaystyle q_{\ell m}} I m {\displaystyle I_{\ell m}} 的定义式内,对于 ϕ {\displaystyle \phi ^{\prime }} 积分,则可以发觉除了 m = 0 {\displaystyle m=0} 球多极矩以外,其它球多极矩都等于零。应用数学恒等式

轴对称球多极矩定义为

则外部球多极展开式为

类似地,轴对称内部球多极矩定义为

内部球多极展开式为

注意到 q ( m ) = ( 1 ) m q m {\displaystyle q_{\ell (-m)}=(-1)^{m}q_{\ell m}^{*}} 。以下列出几个最低阶的球多极矩的表达式,以及与笛卡儿多极矩之间的关系:

其中, ( p x , p y , p z ) {\displaystyle (p_{x},p_{y},p_{z})} 是笛卡儿电偶极矩, Q i j {\displaystyle Q_{ij}} 是笛卡儿电四极矩(electric quadruple moment)。

相关

  • 血管神经性水肿血管神经性水肿是真皮、皮下组织(英语:subcutaneous tissue)、黏膜的局部肿胀。可发生于面部、舌头、喉、腹部、四肢。常与荨麻疹相关,荨麻疹是皮肤的红肿。 Onset is typically
  • 意大利语意大利语(Italiano),中文也简称为意语,隶属于印欧语系的罗曼语族。现有约7千万人日常用意大利语,大多是意大利居民。另有28个国家使用意大利语,其中4个立它为官方语言。正规意大利
  • 内胚层内胚层(Endoderm)是胚胎中最内的一胚层。在绘图中,内胚层传统上用黄色表示。它会形成以下器官的表皮:内胚层一词是源于:to enteron(希腊语)=肠,其实是“内”之意。to derma(希腊语)=皮内
  • IUCN红皮书国际自然保护联盟濒危物种红色名录(或称IUCN红色名录,简称红皮书)于1963年开始编制,是全球动植物物种保护现状最全面的名录。此名录由国际自然保护联盟编制及维护。IUCN红色名录
  • 疯狗浪疯狗浪(Rogue waves),或称异常巨浪(Freak waves)是指比有效波高(Significant wave height)高出1倍的巨浪。疯狗浪其实是海洋中的一种涌浪(又称长浪),也就是人们常说的“无风三尺浪”。
  • 宫旁组织宫旁组织(英语:parametrium),是一类纤维组织,包括宫颈旁和宫体旁组织两部分,分别位于宫颈两侧和子宫体下部周围,二者无明显分界。宫旁组织主要由含血管丰富的结缔组织构成,其中宫颈
  • 奥古斯特·科勒奥古斯特·科勒(英语:August Karl Johann Valentin Köhler, 1866年3月4日 – 1948年3月12日) 一位德国教授,和位于德国耶拿市的蔡司公司的早期工作人员。他最出名的是他开发
  • 墨脱蹄盖蕨墨脱蹄盖蕨(学名:),为蹄盖蕨科蹄盖蕨属下的一个植物种。
  • 尼日利亚皮钦语尼日利亚皮钦语是基于英语的皮钦语和克里奥耳语,也是尼日利亚的通用语。语言通常被称为“Pidgin”或“Brokin”。它往往不被看做克里奥耳语,因为大多数使用者不把它作为母语,虽
  • 大谷山22号坟大谷山22号坟(日语:大谷山22号墳/おおたにやまにじゅうにごうふん )是位于日本和歌山县和歌山市岩桥、鸣神一座前方后圆坟(日语:前方後円墳),属于日本国特别史迹岩桥千冢古坟群(日语