球多极矩

✍ dations ◷ 2025-04-02 13:35:45 #电磁学,位势论

对于与源位置的距离呈反比的位势,其球多极展开所得到的系数称为球多极矩(Spherical multipole moments)。例如,电势、磁向量势、重力势等等,都是这种位势。

源位置为 r {\displaystyle \mathbf {r} ^{\prime }} 的点电荷 q {\displaystyle q} ,其电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 在场位置 r {\displaystyle \mathbf {r} }

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, γ {\displaystyle \gamma } r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} ^{\prime }} 之间的夹角。

假设 r < r {\displaystyle r'<r} ,场位置比源位置离原点更远,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} r / r {\displaystyle r^{\prime }/r} 的幂和勒壤得多项式展开为 :

应用球余弦定律(spherical law of cosine), cos γ {\displaystyle \cos \gamma } 表示为

这结果也可以直接用向量代数直接计算出来。

应用球谐函数加法定理, P ( cos γ ) {\displaystyle P_{\ell }(\cos \gamma )} 又表示为

其中, Y m {\displaystyle Y_{\ell m}} 是球谐函数。

将这方程式代入电势的方程式,可以得到

点电荷的“球多极矩” 定义为

则电势的方程式又可写为

假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} 可以以 r / r {\displaystyle r/r^{\prime }} 的幂和勒壤得多项式展开:

点电荷的“内部球多极矩”(前述的球多极矩称为外部球多极矩)定义为

则电势的方程式写为

前述多极展开方法可以推广至电荷密度分布。将点电荷 q {\displaystyle q} 改换为微小电荷元素 ρ ( r ) d r {\displaystyle \rho (\mathbf {r} ^{\prime })d\mathbf {r} ^{\prime }} ,然后积分,则可得到电势的方程式(假设 r < r {\displaystyle r'<r} ):

其中,电荷密度分布的球多极矩定义为 q m   = d e f   V ρ ( r ) ( r ) Y m ( θ , ϕ )   d 3 r {\displaystyle q_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}\rho (\mathbf {r} ^{\prime })\left(r^{\prime }\right)^{\ell }Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }} V {\displaystyle \mathbb {V} '} 是积分体积。

特别注意,由于电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 为实值,这展开式的复共轭也是同样正确的球多极展开式。然而,这样做会导致球多极矩的定义式含有 Y m {\displaystyle Y_{\ell m}} 项目,而不是其复共轭数 Y m {\displaystyle Y_{\ell m}^{*}} 。在某些领域,例如物理化学,这是一般常规。更详尽资料,请参阅条目分子多极矩(molecular multipole moment)。

类似地,假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则电势的方程式为

其中,电荷密度分布的内部球多极矩定义为 I m   = d e f   V ρ ( r ) Y m ( θ , ϕ ) ( r ) + 1   d 3 r {\displaystyle I_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ^{\prime })Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })}{\left(r^{\prime }\right)^{\ell +1}}}\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }}

两个互不重叠,同心的电荷分布可以用简单公式来描述。设定第一个电荷分布 ρ 1 {\displaystyle \rho _{1}} 在第二个电荷分布 ρ 2 {\displaystyle \rho _{2}} 的内部,则由 ρ 1 {\displaystyle \rho _{1}} 所产生的电势 Φ 1 {\displaystyle \Phi _{1}} ,因为作用于 ρ 2 {\displaystyle \rho _{2}} 而涉及的相互作用能 U {\displaystyle U}

电势 Φ 1 ( r ) {\displaystyle \Phi _{1}(\mathbf {r} )} 可以以外部球多极矩展开为

其中, q 1 m {\displaystyle q_{1\ell m}} 是第一个电荷分布的 m {\displaystyle \ell m} 外部球多极矩。

将这方程式代入相互作用能 U {\displaystyle U} 的方程式,可以得到

注意到其积分项目等于 ρ 2 ( r ) {\displaystyle \rho _{2}(\mathbf {r} ^{\prime })} 的内部球多极矩 I 2 m {\displaystyle I_{2\ell m}} 的复共轭数,相互作用能 U {\displaystyle U} 的方程式约化为简单形式

这方程式可以用来计算,原子核产生的电势因为与其周围的原子轨域耦合而涉及的相互作用能。反过来,给定相互作用能与电子轨域的内部球多极矩,则可以计算原子核的外部球多极矩,从而得知其形状。

假设电荷密度为“轴对称”,即与方位角 ϕ {\displaystyle \phi ^{\prime }} 无关,则球多极展开式的形式很简单。在 q m {\displaystyle q_{\ell m}} I m {\displaystyle I_{\ell m}} 的定义式内,对于 ϕ {\displaystyle \phi ^{\prime }} 积分,则可以发觉除了 m = 0 {\displaystyle m=0} 球多极矩以外,其它球多极矩都等于零。应用数学恒等式

轴对称球多极矩定义为

则外部球多极展开式为

类似地,轴对称内部球多极矩定义为

内部球多极展开式为

注意到 q ( m ) = ( 1 ) m q m {\displaystyle q_{\ell (-m)}=(-1)^{m}q_{\ell m}^{*}} 。以下列出几个最低阶的球多极矩的表达式,以及与笛卡儿多极矩之间的关系:

其中, ( p x , p y , p z ) {\displaystyle (p_{x},p_{y},p_{z})} 是笛卡儿电偶极矩, Q i j {\displaystyle Q_{ij}} 是笛卡儿电四极矩(electric quadruple moment)。

相关

  • 意大利– æ¬§æ´²ï¼ˆæµ…绿色åŠæ·±ç°è‰²ï¼‰â€“ æ¬§ç›Ÿï¼ˆæµ…绿色)  —æ„大利共和å
  • 外来种外来种,有时也称为引入种,是指原来在当地没有自然分布,经由人为无意或有意引进的物种。由于人类在世界各地交流频繁,使得许多生物得以突破地理隔绝,拓展至他处。外来种移入后,可能
  • 社会女性主义社会主义女权主义(Socialist feminism)或社会主义女权主义是女权主义的一个分支,它侧重于关注女性生活中的公共领域与私人领域,并认为只能通过致力于终结经济和文化上对女性压迫
  • 大东亚会议大东亚会议是由日本在第二次世界大战期间召开的一次国际会议,一般认为该会议是一场用于宣传日本对亚洲政策——大东亚共荣圈的样板会议。大东亚会议于1943年11月5日到11月6日
  • 生态环境生态环境(biophysical environment)是指生物或种群周围的生物和非生物成分的总和,一般来说会包含影响生物生存、繁衍以及进化的因素,生态环境既可能小到只能通过显微镜才能看到
  • 乌尔里希斯基兴-施莱恩巴赫乌尔里希斯基兴-施莱恩巴赫(德语:Ulrichskirchen-Schleinbach)是奥地利下奥地利州米斯特尔巴赫县的一个市镇。总面积26.5平方公里,总人口2437人,人口密度92.0人/平方公里(2005年)。
  • NIRFNIRF(Np95/ICBP90-like RING finger protein)是由日本福岛医科大学 Kochi 教授于2002 年新发现的核蛋白,基因定位于 9p24.1。NIRF 蛋白全长含有802个氨基酸残基,包含了 UBL(ubiqu
  • 朱企岷显王朱企�(?-1643年),明朝第十代岷王,追封岷王朱干坤嫡子,宪王朱定燿的庶孙。他何时受封常宁王已不可考,但又在崇祯四年(1631年)晋封岷王。他在位十二年。崇祯十六年(1643年)盗贼攻陷武
  • 重庆交通重庆是中国西南地区的综合性交通枢纽,唯一拥有水、铁、公、空等多种交通方式的特大型交通枢纽。重庆中心城区(主城九区)位于长江与嘉陵江交汇处。对外交通的铁路、公路、水运、
  • 山泉镇 (成都市)山泉镇,是中华人民共和国四川省成都市龙泉驿区下辖的一个乡镇级行政单位。2019年12月,撤销茶店镇、万兴乡,将原茶店镇和原万兴乡所属行政区域划归山泉镇管辖,山泉镇人民政府驻东