球多极矩

✍ dations ◷ 2025-07-27 01:20:00 #电磁学,位势论

对于与源位置的距离呈反比的位势,其球多极展开所得到的系数称为球多极矩(Spherical multipole moments)。例如,电势、磁向量势、重力势等等,都是这种位势。

源位置为 r {\displaystyle \mathbf {r} ^{\prime }} 的点电荷 q {\displaystyle q} ,其电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 在场位置 r {\displaystyle \mathbf {r} }

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, γ {\displaystyle \gamma } r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} ^{\prime }} 之间的夹角。

假设 r < r {\displaystyle r'<r} ,场位置比源位置离原点更远,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} r / r {\displaystyle r^{\prime }/r} 的幂和勒壤得多项式展开为 :

应用球余弦定律(spherical law of cosine), cos γ {\displaystyle \cos \gamma } 表示为

这结果也可以直接用向量代数直接计算出来。

应用球谐函数加法定理, P ( cos γ ) {\displaystyle P_{\ell }(\cos \gamma )} 又表示为

其中, Y m {\displaystyle Y_{\ell m}} 是球谐函数。

将这方程式代入电势的方程式,可以得到

点电荷的“球多极矩” 定义为

则电势的方程式又可写为

假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} 可以以 r / r {\displaystyle r/r^{\prime }} 的幂和勒壤得多项式展开:

点电荷的“内部球多极矩”(前述的球多极矩称为外部球多极矩)定义为

则电势的方程式写为

前述多极展开方法可以推广至电荷密度分布。将点电荷 q {\displaystyle q} 改换为微小电荷元素 ρ ( r ) d r {\displaystyle \rho (\mathbf {r} ^{\prime })d\mathbf {r} ^{\prime }} ,然后积分,则可得到电势的方程式(假设 r < r {\displaystyle r'<r} ):

其中,电荷密度分布的球多极矩定义为 q m   = d e f   V ρ ( r ) ( r ) Y m ( θ , ϕ )   d 3 r {\displaystyle q_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}\rho (\mathbf {r} ^{\prime })\left(r^{\prime }\right)^{\ell }Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }} V {\displaystyle \mathbb {V} '} 是积分体积。

特别注意,由于电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 为实值,这展开式的复共轭也是同样正确的球多极展开式。然而,这样做会导致球多极矩的定义式含有 Y m {\displaystyle Y_{\ell m}} 项目,而不是其复共轭数 Y m {\displaystyle Y_{\ell m}^{*}} 。在某些领域,例如物理化学,这是一般常规。更详尽资料,请参阅条目分子多极矩(molecular multipole moment)。

类似地,假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则电势的方程式为

其中,电荷密度分布的内部球多极矩定义为 I m   = d e f   V ρ ( r ) Y m ( θ , ϕ ) ( r ) + 1   d 3 r {\displaystyle I_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ^{\prime })Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })}{\left(r^{\prime }\right)^{\ell +1}}}\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }}

两个互不重叠,同心的电荷分布可以用简单公式来描述。设定第一个电荷分布 ρ 1 {\displaystyle \rho _{1}} 在第二个电荷分布 ρ 2 {\displaystyle \rho _{2}} 的内部,则由 ρ 1 {\displaystyle \rho _{1}} 所产生的电势 Φ 1 {\displaystyle \Phi _{1}} ,因为作用于 ρ 2 {\displaystyle \rho _{2}} 而涉及的相互作用能 U {\displaystyle U}

电势 Φ 1 ( r ) {\displaystyle \Phi _{1}(\mathbf {r} )} 可以以外部球多极矩展开为

其中, q 1 m {\displaystyle q_{1\ell m}} 是第一个电荷分布的 m {\displaystyle \ell m} 外部球多极矩。

将这方程式代入相互作用能 U {\displaystyle U} 的方程式,可以得到

注意到其积分项目等于 ρ 2 ( r ) {\displaystyle \rho _{2}(\mathbf {r} ^{\prime })} 的内部球多极矩 I 2 m {\displaystyle I_{2\ell m}} 的复共轭数,相互作用能 U {\displaystyle U} 的方程式约化为简单形式

这方程式可以用来计算,原子核产生的电势因为与其周围的原子轨域耦合而涉及的相互作用能。反过来,给定相互作用能与电子轨域的内部球多极矩,则可以计算原子核的外部球多极矩,从而得知其形状。

假设电荷密度为“轴对称”,即与方位角 ϕ {\displaystyle \phi ^{\prime }} 无关,则球多极展开式的形式很简单。在 q m {\displaystyle q_{\ell m}} I m {\displaystyle I_{\ell m}} 的定义式内,对于 ϕ {\displaystyle \phi ^{\prime }} 积分,则可以发觉除了 m = 0 {\displaystyle m=0} 球多极矩以外,其它球多极矩都等于零。应用数学恒等式

轴对称球多极矩定义为

则外部球多极展开式为

类似地,轴对称内部球多极矩定义为

内部球多极展开式为

注意到 q ( m ) = ( 1 ) m q m {\displaystyle q_{\ell (-m)}=(-1)^{m}q_{\ell m}^{*}} 。以下列出几个最低阶的球多极矩的表达式,以及与笛卡儿多极矩之间的关系:

其中, ( p x , p y , p z ) {\displaystyle (p_{x},p_{y},p_{z})} 是笛卡儿电偶极矩, Q i j {\displaystyle Q_{ij}} 是笛卡儿电四极矩(electric quadruple moment)。

相关

  • 于格·卡佩雨果·卡佩(法语:Hugues Capet,941年-996年10月24日),一译于格·卡佩,法兰西国王。巴黎伯爵伟大雨果的儿子。祖父为西法兰克国王罗贝尔一世。956年继承父亲为法兰西公爵。 987年被
  • 苏拉威西野猪苏拉威西野猪(学名:Sus celebensis)是猪属的一种,原产于印尼苏拉威西岛与部分邻近岛屿。本种猪自远古时代即为当地居民所驯化利用,近年来其族群数量因栖地破坏与过度捕猎等原因而
  • 玫瑰虾玫瑰虾(Neocaridina denticulata var. "red"),又名火焰虾或樱花虾,是来自台湾的一种淡水虾,为黑壳虾经人工繁殖之改良品种,其色为浅红且成网纹,具观赏价值。若其色为遍体深红或酒红
  • 1972年夏季奥林匹克运动会第二十届夏季奥林匹克运动会(英语:the Games of the XX Olympiad,法语:les Jeux de la XXe Olympiade,德语:die Spiele der XX. Olympiade),于1972年8月26日至9月11日在联邦德国慕尼
  • 藨草藨草(学名:Scirpus triqueter),是莎草科藨草属的一种草本植物,分布广泛,中国、朝鲜、日本、俄罗斯、中亚、欧洲都能找到它的身影儿。主要生长在水塘池沟沼泽地等水比较多的地方。
  • 佐藤奏美佐藤奏美(7月16日-)是日本女性声优,Across Entertainment所属。岩手县出身。剧场版:约会大作战万由里审判 (冈峰美纪惠)
  • 亨利三世 (神圣罗马帝国)海因里希三世 Heinrich III(1017年10月28日~1056年10月5日),巴伐利亚公爵(称海因里希六世,1026年~1041年在位),士瓦本公爵(称亨利一世,1038年~1045年在位),罗马人民的国王(1039年~1056年
  • 杰克逊维尔市中心杰克逊维尔市中心(Downtown Jacksonville)是佛罗里达州杰克逊维尔的中央商业区与多样化的居民区,约8,000人居住。2015年的研究发现,该小区提供超过59,000人就业。坐标:30°19′38
  • 当代传奇剧场当代传奇剧场(英语:Contemporary Legend Theatre),于1986年成立,是台湾表演艺术团体之中,少数在国际舞台上深受瞩目的团体之一。创团契机乃因当时台湾部分戏曲演员意识到传统艺术
  • 良宽良宽(1758年-1831年),号大愚,俗名山本荣藏“やまもとえいぞう”(元服后为文孝“ふみたか”),生于日本越后国出云崎(今新潟县三岛郡出云崎町),江户时代的禅门曹洞宗僧人。他为一位云游僧