球多极矩

✍ dations ◷ 2025-11-16 14:16:21 #电磁学,位势论

对于与源位置的距离呈反比的位势,其球多极展开所得到的系数称为球多极矩(Spherical multipole moments)。例如,电势、磁向量势、重力势等等,都是这种位势。

源位置为 r {\displaystyle \mathbf {r} ^{\prime }} 的点电荷 q {\displaystyle q} ,其电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 在场位置 r {\displaystyle \mathbf {r} }

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, γ {\displaystyle \gamma } r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} ^{\prime }} 之间的夹角。

假设 r < r {\displaystyle r'<r} ,场位置比源位置离原点更远,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} r / r {\displaystyle r^{\prime }/r} 的幂和勒壤得多项式展开为 :

应用球余弦定律(spherical law of cosine), cos γ {\displaystyle \cos \gamma } 表示为

这结果也可以直接用向量代数直接计算出来。

应用球谐函数加法定理, P ( cos γ ) {\displaystyle P_{\ell }(\cos \gamma )} 又表示为

其中, Y m {\displaystyle Y_{\ell m}} 是球谐函数。

将这方程式代入电势的方程式,可以得到

点电荷的“球多极矩” 定义为

则电势的方程式又可写为

假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} 可以以 r / r {\displaystyle r/r^{\prime }} 的幂和勒壤得多项式展开:

点电荷的“内部球多极矩”(前述的球多极矩称为外部球多极矩)定义为

则电势的方程式写为

前述多极展开方法可以推广至电荷密度分布。将点电荷 q {\displaystyle q} 改换为微小电荷元素 ρ ( r ) d r {\displaystyle \rho (\mathbf {r} ^{\prime })d\mathbf {r} ^{\prime }} ,然后积分,则可得到电势的方程式(假设 r < r {\displaystyle r'<r} ):

其中,电荷密度分布的球多极矩定义为 q m   = d e f   V ρ ( r ) ( r ) Y m ( θ , ϕ )   d 3 r {\displaystyle q_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}\rho (\mathbf {r} ^{\prime })\left(r^{\prime }\right)^{\ell }Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }} V {\displaystyle \mathbb {V} '} 是积分体积。

特别注意,由于电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 为实值,这展开式的复共轭也是同样正确的球多极展开式。然而,这样做会导致球多极矩的定义式含有 Y m {\displaystyle Y_{\ell m}} 项目,而不是其复共轭数 Y m {\displaystyle Y_{\ell m}^{*}} 。在某些领域,例如物理化学,这是一般常规。更详尽资料,请参阅条目分子多极矩(molecular multipole moment)。

类似地,假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则电势的方程式为

其中,电荷密度分布的内部球多极矩定义为 I m   = d e f   V ρ ( r ) Y m ( θ , ϕ ) ( r ) + 1   d 3 r {\displaystyle I_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ^{\prime })Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })}{\left(r^{\prime }\right)^{\ell +1}}}\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }}

两个互不重叠,同心的电荷分布可以用简单公式来描述。设定第一个电荷分布 ρ 1 {\displaystyle \rho _{1}} 在第二个电荷分布 ρ 2 {\displaystyle \rho _{2}} 的内部,则由 ρ 1 {\displaystyle \rho _{1}} 所产生的电势 Φ 1 {\displaystyle \Phi _{1}} ,因为作用于 ρ 2 {\displaystyle \rho _{2}} 而涉及的相互作用能 U {\displaystyle U}

电势 Φ 1 ( r ) {\displaystyle \Phi _{1}(\mathbf {r} )} 可以以外部球多极矩展开为

其中, q 1 m {\displaystyle q_{1\ell m}} 是第一个电荷分布的 m {\displaystyle \ell m} 外部球多极矩。

将这方程式代入相互作用能 U {\displaystyle U} 的方程式,可以得到

注意到其积分项目等于 ρ 2 ( r ) {\displaystyle \rho _{2}(\mathbf {r} ^{\prime })} 的内部球多极矩 I 2 m {\displaystyle I_{2\ell m}} 的复共轭数,相互作用能 U {\displaystyle U} 的方程式约化为简单形式

这方程式可以用来计算,原子核产生的电势因为与其周围的原子轨域耦合而涉及的相互作用能。反过来,给定相互作用能与电子轨域的内部球多极矩,则可以计算原子核的外部球多极矩,从而得知其形状。

假设电荷密度为“轴对称”,即与方位角 ϕ {\displaystyle \phi ^{\prime }} 无关,则球多极展开式的形式很简单。在 q m {\displaystyle q_{\ell m}} I m {\displaystyle I_{\ell m}} 的定义式内,对于 ϕ {\displaystyle \phi ^{\prime }} 积分,则可以发觉除了 m = 0 {\displaystyle m=0} 球多极矩以外,其它球多极矩都等于零。应用数学恒等式

轴对称球多极矩定义为

则外部球多极展开式为

类似地,轴对称内部球多极矩定义为

内部球多极展开式为

注意到 q ( m ) = ( 1 ) m q m {\displaystyle q_{\ell (-m)}=(-1)^{m}q_{\ell m}^{*}} 。以下列出几个最低阶的球多极矩的表达式,以及与笛卡儿多极矩之间的关系:

其中, ( p x , p y , p z ) {\displaystyle (p_{x},p_{y},p_{z})} 是笛卡儿电偶极矩, Q i j {\displaystyle Q_{ij}} 是笛卡儿电四极矩(electric quadruple moment)。

相关

  • CBC,CBC可以指:
  • 曼恩-卢瓦尔省曼恩-卢瓦尔省(省编号49,法语:Maine-et-Loire)地处法国中西部著名的卢瓦尔河流域,是前安茹所在地,历史上和英国有紧密联系。现省会昂热(Angers),约有20万人口。法国大革命前的历史参
  • 薛永祺薛永祺(1937年1月11日-),江苏张家港人,中国红外和遥感技术专家,中国科学院上海技术物理研究所研究员。1959年毕业于华东师范大学物理系,获学士学位。1999年当选为中国科学院院士。
  • 食欲欠佳食欲不振(英语:Anorexia),也作食欲减退、食欲缺乏,民间常称“没胃口”,是指食欲降低的一种症状。虽然在许多非科研出版物中该词也可指代神经性厌食症,但是食欲不振的成因却多种多样
  • 朱丽·沃特斯朱丽亚·玛莉·沃特斯女爵士,DBE(英语:Dame Julia Mary Walters,1950年2月22日-)是一名英格兰女演员及作家。她曾凭在电影《凡夫俗女(英语:Educating Rita (film))》(1983年)中的演出而
  • 诺曼·艾布拉姆森诺曼·艾布拉姆森(英语:Norman Abramson,1932年4月1日-),生于麻塞诸塞州波士顿,美国计算机科学家,开发出ALOHAnet无线通讯系统。1953年,在哈佛大学取得物理学学士。1955年,于洛杉矶加
  • 三仇三仇可能指:
  • 刘地伟刘地伟(1969年-),河南郑州人,维权人士,现居河南郑州,为土地权利受侵害者。由于维权活动受到政治迫害。维权经历:2014年5月8日,被郑州市警方抓捕,并以涉嫌“聚众扰乱社会秩序罪”刑事拘
  • 屏东 (金门县)金门县的屏东地区指的是金沙镇与金湖镇交界地带,环岛东路一段以西,金东加油站以南,民享地区以东,玉章路以北,包含龙陵湖、后陵公园的地区。
  • 问号؋ ​₳ ​฿ ​₿ ​₵ ​¢ ​₡ ​₢(英语:Brazilian cruzeiro) ​$ ​₫ ​₯ ​֏ ​₠ ​€ ​ƒ(英语:Florin sign) ​₣ ​₲ ​₴(英语:Hryvnia sign) ​₭ ​₺ ​₾ ​₼