球多极矩

✍ dations ◷ 2025-07-06 02:16:01 #电磁学,位势论

对于与源位置的距离呈反比的位势,其球多极展开所得到的系数称为球多极矩(Spherical multipole moments)。例如,电势、磁向量势、重力势等等,都是这种位势。

源位置为 r {\displaystyle \mathbf {r} ^{\prime }} 的点电荷 q {\displaystyle q} ,其电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 在场位置 r {\displaystyle \mathbf {r} }

其中, ε 0 {\displaystyle \varepsilon _{0}} 是电常数, γ {\displaystyle \gamma } r {\displaystyle \mathbf {r} } r {\displaystyle \mathbf {r} ^{\prime }} 之间的夹角。

假设 r < r {\displaystyle r'<r} ,场位置比源位置离原点更远,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} r / r {\displaystyle r^{\prime }/r} 的幂和勒壤得多项式展开为 :

应用球余弦定律(spherical law of cosine), cos γ {\displaystyle \cos \gamma } 表示为

这结果也可以直接用向量代数直接计算出来。

应用球谐函数加法定理, P ( cos γ ) {\displaystyle P_{\ell }(\cos \gamma )} 又表示为

其中, Y m {\displaystyle Y_{\ell m}} 是球谐函数。

将这方程式代入电势的方程式,可以得到

点电荷的“球多极矩” 定义为

则电势的方程式又可写为

假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则此距离倒数函数 1 / | r r | {\displaystyle 1/|\mathbf {r} -\mathbf {r^{\prime }} |} 可以以 r / r {\displaystyle r/r^{\prime }} 的幂和勒壤得多项式展开:

点电荷的“内部球多极矩”(前述的球多极矩称为外部球多极矩)定义为

则电势的方程式写为

前述多极展开方法可以推广至电荷密度分布。将点电荷 q {\displaystyle q} 改换为微小电荷元素 ρ ( r ) d r {\displaystyle \rho (\mathbf {r} ^{\prime })d\mathbf {r} ^{\prime }} ,然后积分,则可得到电势的方程式(假设 r < r {\displaystyle r'<r} ):

其中,电荷密度分布的球多极矩定义为 q m   = d e f   V ρ ( r ) ( r ) Y m ( θ , ϕ )   d 3 r {\displaystyle q_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}\rho (\mathbf {r} ^{\prime })\left(r^{\prime }\right)^{\ell }Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }} V {\displaystyle \mathbb {V} '} 是积分体积。

特别注意,由于电势 Φ ( r ) {\displaystyle \Phi (\mathbf {r} )} 为实值,这展开式的复共轭也是同样正确的球多极展开式。然而,这样做会导致球多极矩的定义式含有 Y m {\displaystyle Y_{\ell m}} 项目,而不是其复共轭数 Y m {\displaystyle Y_{\ell m}^{*}} 。在某些领域,例如物理化学,这是一般常规。更详尽资料,请参阅条目分子多极矩(molecular multipole moment)。

类似地,假设 r < r {\displaystyle r<r'} ,场位置比源位置离原点更近,则电势的方程式为

其中,电荷密度分布的内部球多极矩定义为 I m   = d e f   V ρ ( r ) Y m ( θ , ϕ ) ( r ) + 1   d 3 r {\displaystyle I_{\ell m}\ {\stackrel {\mathrm {def} }{=}}\ \int _{\mathbb {V} '}{\frac {\rho (\mathbf {r} ^{\prime })Y_{\ell m}^{*}(\theta ^{\prime },\phi ^{\prime })}{\left(r^{\prime }\right)^{\ell +1}}}\ \mathrm {d} ^{3}\mathbf {r} ^{\prime }}

两个互不重叠,同心的电荷分布可以用简单公式来描述。设定第一个电荷分布 ρ 1 {\displaystyle \rho _{1}} 在第二个电荷分布 ρ 2 {\displaystyle \rho _{2}} 的内部,则由 ρ 1 {\displaystyle \rho _{1}} 所产生的电势 Φ 1 {\displaystyle \Phi _{1}} ,因为作用于 ρ 2 {\displaystyle \rho _{2}} 而涉及的相互作用能 U {\displaystyle U}

电势 Φ 1 ( r ) {\displaystyle \Phi _{1}(\mathbf {r} )} 可以以外部球多极矩展开为

其中, q 1 m {\displaystyle q_{1\ell m}} 是第一个电荷分布的 m {\displaystyle \ell m} 外部球多极矩。

将这方程式代入相互作用能 U {\displaystyle U} 的方程式,可以得到

注意到其积分项目等于 ρ 2 ( r ) {\displaystyle \rho _{2}(\mathbf {r} ^{\prime })} 的内部球多极矩 I 2 m {\displaystyle I_{2\ell m}} 的复共轭数,相互作用能 U {\displaystyle U} 的方程式约化为简单形式

这方程式可以用来计算,原子核产生的电势因为与其周围的原子轨域耦合而涉及的相互作用能。反过来,给定相互作用能与电子轨域的内部球多极矩,则可以计算原子核的外部球多极矩,从而得知其形状。

假设电荷密度为“轴对称”,即与方位角 ϕ {\displaystyle \phi ^{\prime }} 无关,则球多极展开式的形式很简单。在 q m {\displaystyle q_{\ell m}} I m {\displaystyle I_{\ell m}} 的定义式内,对于 ϕ {\displaystyle \phi ^{\prime }} 积分,则可以发觉除了 m = 0 {\displaystyle m=0} 球多极矩以外,其它球多极矩都等于零。应用数学恒等式

轴对称球多极矩定义为

则外部球多极展开式为

类似地,轴对称内部球多极矩定义为

内部球多极展开式为

注意到 q ( m ) = ( 1 ) m q m {\displaystyle q_{\ell (-m)}=(-1)^{m}q_{\ell m}^{*}} 。以下列出几个最低阶的球多极矩的表达式,以及与笛卡儿多极矩之间的关系:

其中, ( p x , p y , p z ) {\displaystyle (p_{x},p_{y},p_{z})} 是笛卡儿电偶极矩, Q i j {\displaystyle Q_{ij}} 是笛卡儿电四极矩(electric quadruple moment)。

相关

  • 线虫动物门线虫动物门(学名:Nematoda)是动物界中最大的门之一,为假体腔动物,绝大多数体小呈圆柱形,又称圆虫(roundworms)。线虫的物种很不容易区分,有相关描述的已超过二万五千种,其中超过一半是
  • 巴豆巴豆(学名:Croton tiglium),在中药中指大戟科巴豆属植物巴豆(中药拉丁名:Fructus Crotonis)的干燥成熟果实。巴豆又名落水金刚、猛树、广仔子。广泛分布在中国长江以南各地。常绿灌
  • 周密周密(1232年-1298年),宋末元初人,字公谨,号草窗,又号四水潜夫、弁阳老人、弁阳啸翁。著有《齐东野语》等书。祖籍济南(今属山东),后来曾祖周秘南渡吴兴。早年以门荫监建康府都钱库。景
  • 成员书院br /small又译“学院”/small剑桥大学学院列表列举了剑桥大学目前所有的成员学院(Colleges,又译“书院”)。这些成员学院是剑桥大学本科生和研究生住宿的地方,他们同时也负责安排自己的本科生录取,亦会为大学
  • 迷你裙迷你裙是一种长度只及膝盖以上的短裙,迷你裙的其中一个定义是站立时,食指和无名指可以触及裙子的底边。但普遍的称呼中,通常也把膝盖以上长度的短裙为迷你裙,尽管他们比迷你裙长
  • 约瑟夫·艾伦约瑟夫·帕西瓦尔·艾伦(Joseph Percival Allen,1937年6月27日-)曾是一位美国国家航空航天局的宇航员,执行过STS-5以及STS-51-A任务。
  • 约翰·卡尔斯特罗姆约翰·E·卡尔斯特罗姆(英语:John E. Carlstrom,1957年-),美国天体物理学家,芝加哥大学天文学和天体物理学院、物理学院教授。
  • 恩斯特·奥古斯特一世恩斯特·奥古斯特一世(Ernst August I,1771年6月5日-1851年11月18日),1837年—1851年在位为汉诺威国王,1799年—1851年为坎伯兰和特维奥特戴尔公爵(英语:Duke of Cumberland and Tev
  • 霍华德·霍克斯霍华德·温彻斯特·霍克斯(Howard Winchester Hawks,1896年5月30日-1977年12月26日)是一位美国电影导演与制作人,被广泛的认为是美国电影史上影响最大的导演之一。霍华德·霍克斯
  • 李乐诗李乐诗可以指: