电极化

✍ dations ◷ 2024-09-20 10:40:06 #电磁学,物质内的电场和磁场

在经典电磁学里,当给电介质施加一个电场时,由于电介质内部正负电荷的相对位移,会产生电偶极子,这现象称为电极化(英语:electric polarization)。施加的电场可能是外电场,也可能是嵌入电介质内部的自由电荷所产生的电场。因为电极化而产生的电偶极子称为“感应电偶极子”,其电偶极矩称为“感应电偶极矩”。

电极化强度又称为“电极化矢量”,定义为电介质内的电偶极矩密度,也就是单位体积的电偶极矩。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。它的国际单位制度量单位是库仑每平方米(coulomb/m2),表示为矢量 P。

电极化强度 P 定义为电介质单位体积 内的电偶极矩 p 的平均值:

可以理解为在材料区域内电偶极子的强度和对齐程度。这个定义很容易推广到解析定义,即电极化就是电偶极矩微元 p 与体积微元 的比值:

这反过来便能导出电极化的物体的电偶极矩的一般表达式:

这表明 P-场与磁化强度 M-场是完全类似的:

对于由一个外加电场引起的 P 值的计算,必须已知电介质的电极化率 χ(见下文)。

束缚电荷是束缚于电介质内部某微观区域的电荷。这微观区域指的是像原子或分子一类的区域。自由电荷是不束缚于电介质内部某微观区域的电荷。电极化会稍微改变物质内部的束缚电荷的位置,虽然这束缚电荷仍旧束缚于原先的微观区域,但这会形成一种不同的电荷密度,称为“束缚电荷密度” ρ b o u n d {\displaystyle \rho _{bound}}

注意刚才研究的是电偶极子中伸出界面的那部分,原微观区域的束缚电荷符号相反,故有负号。

总电荷密度 ρ t o t a l {\displaystyle \rho _{total}} 是“自由电荷密度” ρ f r e e {\displaystyle \rho _{free}} 与束缚电荷密度的总和:

在电介质的表面,束缚电荷以表面电荷的形式存在,其表面密度称为“面束缚电荷密度” σ b o u n d {\displaystyle \sigma _{bound}}

其中, n ^ o u t {\displaystyle {\hat {\mathbf {n} }}_{\mathrm {out} }\,} 是从电介质表面往外指的法矢量。假若,电介质内部的电极化强度是均匀的, P {\displaystyle \mathbf {P} } 是个常数矢量,则 ρ b o u n d {\displaystyle \rho _{bound}} 等于0,这电介质所有的束缚电荷都是面束缚电荷。

假设电极化强度含时间,则束缚电荷密度也含时间,因而产生了“电极化电流密度” J p {\displaystyle \mathbf {J} _{p}} (A/m2):

那么,电介质的总电流密度 J t o t a l {\displaystyle \mathbf {J} _{total}}

其中, J f r e e {\displaystyle \mathbf {J} _{free}} 是“自由电流密度”, J b o u n d {\displaystyle \mathbf {J} _{bound}} 是“束缚电流密度”, M {\displaystyle \mathbf {M} } 是磁化强度。

“自由电流”是由外处进来的电流,不是由电介质的束缚电荷所构成的电流。“束缚电流”是由电介质束缚电荷产生的磁偶极子所构成的电流,一个原子尺寸的现象。

电极化强度 P {\displaystyle \mathbf {P} } 、电场 E {\displaystyle \mathbf {E} } 、电势移 D {\displaystyle \mathbf {D} } ,这三个矢量的关系式为一个定义式:

其中, ϵ 0 {\displaystyle \epsilon _{0}} 是电常数。

对于各向同性、线性电介质,电极化强度 P {\displaystyle \mathbf {P} } 和电场 E {\displaystyle \mathbf {E} } 的比例是电极化率 χ e {\displaystyle \chi _{e}}

所以,电势移与电场成正比:

其中, ε {\displaystyle \varepsilon } 是电容率。

电极化强度 P {\displaystyle \mathbf {P} } 、电场 E {\displaystyle \mathbf {E} } 、电势移 D {\displaystyle \mathbf {D} } ,这三个矢量的方向都一样。另外,

假设这电介质具有均匀性,则电容率 ϵ {\displaystyle \epsilon } 是常数:

对于各向异性、线性电介质,电极化强度和电场的方向不一定一样。电极化强度的第 i {\displaystyle i} 个分量与电场的第 j {\displaystyle j} 个分量的关系式为

其中, χ {\displaystyle \chi } 是电介质的电极化率张量。例如,晶体光学(crystal optics)就会研究到很多各向异性电介质晶体。

电磁学所讲述的物理量大多都是巨观的平均值,像电场平均值、偶极子密度平均值、电极化强度平均值等等,都是取于一个超大于原子尺寸的区域。只有这样,科学家才能够研究一个电介质的连续近似。而当研究微观问题时,对于在电介质内的单独粒子,其极化性跟电极化率平均值、电极化强度平均值的关系,可以用克劳修斯-莫索提方程来表达。

假若电极化强度和电场不呈线性正比,则称这电介质为非线性电介质。非线性光学可以用来描述这种电介质的性质。假设电场 E {\displaystyle \mathbf {E} } 足够地微弱,不存在任何永久电偶极子,则电极化强度 P {\displaystyle \mathbf {P} } 可以令人相当满意地以泰勒级数近似为

其中, χ ( 1 ) {\displaystyle \chi ^{(1)}} 是线性电极化率, χ ( 2 ) {\displaystyle \chi ^{(2)}} 给出波克斯效应(Pockels effect), χ ( 3 ) {\displaystyle \chi ^{(3)}} 给出克尔效应(Kerr effect)。

对于铁电材料,因为迟滞现象, P {\displaystyle \mathbf {P} } E {\displaystyle \mathbf {E} } 之间,不存在一一对应关系。

相关

  • 减毒病毒疫苗减毒活病毒(英语:attenuated virus,又译弱化病毒)是指致病性被削弱的病毒,这些病毒在毒性降低的同时,仍保有活性,也就是并未被杀死。制造这类病毒的主要目的是为了生产疫苗。与其相
  • 单糖单糖(monosaccharides (源自希腊语 monos: single, sacchar: sugar), 亦称:simple sugars)是碳水化合物的一种,其结构在众多糖分子中是最简单的。味道甜美,能溶于水和会结晶。单
  • 阶层关于美国社会阶层一直有着很大的争议,而对于阶层的定义也有许多不同的观点。许多美国民众认为可分成三个阶层,分别是“富裕”、“中产阶级”和“贫穷”。其他许多更复杂的社会
  • 伊凡四世伊凡四世·瓦西里耶维奇(俄语:Иван IV Васильевич,1530年8月25日-1584年3月18日),又被称为伊凡雷帝(俄语:Иван Грозный),俄罗斯沙皇国的开创者。留里克王朝
  • 赵继宗赵继宗(1945年-),北京人,中国神经外科专家,1969年毕业于第四军医大学。担任首都医科大学附属北京天坛医院神经外科学系主任、教授、主任医师。2012年成为“中国名医百强榜”上榜
  • 铨叙部铨叙部为中华民国考试院的两个附属部门之一,为中华民国最高铨叙以及公务人员人事主管机关。由五眼联盟辗转通知,铨叙部有高达59万笔文官服务单位、职称等个人资料外泄,并遭架设
  • 荧蒽荧蒽(Fluoranthene),又名苯并苊,化学式C16H10,是一种多环芳香烃,其名称来源于在紫外光下会发出荧光(Fluorescence)。荧由萘与苯经五元环相连组成,这两个共轭体系是分离的,因而它在热力
  • 联邦印第安事务局印第安事务局(英语:Bureau of Indian Affairs, BIA)为美国内政部下属的联邦政府机构,主要管理由美国所信托(英语:Trust law)给美国原住民、部落(英语:List of federally recognized t
  • 沈家门沈家门是中国著名的渔港,位于舟山岛东端。舟山市普陀区政府目前驻在该港城。在历史上很长一段时间内,沈家门都是舟山第一大城镇,直到定海城关,凭借市府所在地的优势,在约1990年代
  • 科瓦利斯 (俄勒冈州)科瓦利斯(英语:Corvallis /kɔːrˈvælᵻs/)是美国俄勒冈州中西部的一个小型城市,为本顿县的县治,中文又称谷心镇。因威拉米特河的支流玛丽河流经此地而被称为玛丽威尔(Marysvill