海森堡绘景

✍ dations ◷ 2025-08-16 00:16:08 #海森堡绘景
海森堡绘景(Heisenberg picture)是量子力学的一种表述,因物理学者维尔纳·海森堡而命名。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。使用海森堡绘景,可以很容易地观察到量子系统与经典系统之间的动力学关系。:第2章第25页海森堡绘景与薛定谔绘景、狄拉克绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化,而像位置、动量一类的对应于可观察量的算符则不会随着时间流易而演化。在狄拉克绘景里,态矢量与对应于可观察量的算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、薛定谔绘景。在量子力学的海森堡绘景里,态矢量 | ψ ⟩ H {displaystyle |psi rangle _{mathcal {H}}} 不含时,而可观察量的算符 A H {displaystyle A_{mathcal {H}}} 则含时,并且满足“海森堡运动方程”::80-84其中, ℏ {displaystyle hbar } 是约化普朗克常数, H {displaystyle H} 是哈密顿量, [ A H , H ] {displaystyle } 是 A H {displaystyle A_{mathcal {H}}} 与 H {displaystyle H} 的对易算符。从某种角度来看,海森堡绘景比薛定谔绘景显得更为自然,更具有基础性,因为,经典力学分析物体运动所使用的物理量是可观察量,例如,位置、动量等等,而海森堡绘景专注的就是这些可观察量随着时间流易的演化。进一步来看,海森堡绘景表述的量子力学与经典力学的相似可以很容易的观察到:只要将对易算符改为泊松括号,海森堡方程立刻就变成了哈密顿力学里的运动方程,其形式表示为:396-397其中, [   ,   ] P o i s s o n {displaystyle _{Poisson}} 是泊松括号。通过狄拉克量子化条件(英语:canonical quantization),可以从哈密顿力学的运动方程得到海森堡运动方程:史东-冯诺伊曼理论(英语:Stone-von Neumann theorem)证明海森堡绘景与薛定谔绘景是等价的。在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从 0 {displaystyle 0} 流易到 t {displaystyle t} ,而经过这段时间间隔,态矢量 | ψ ( 0 ) ⟩ S {displaystyle |psi (0)rangle _{mathcal {S}}} 演化为 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}}} ,这时间演化过程以方程表示为其中, U ( t , 0 ) {displaystyle U(t,0)} 是时间从 0 {displaystyle 0} 流易到 t {displaystyle t} 的时间演化算符。时间演化算符是幺正算符:假设系统的哈密顿量 H {displaystyle H} 不含时,则时间演化算符为:69-71而且,时间演化算符与哈密顿量相互对易:注意到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} 必须通过其泰勒级数计算。在海森堡绘景里,态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 分别定义为由于 U ( t , 0 ) {displaystyle U(t,0)} 、 U † ( t , 0 ) {displaystyle U^{dagger }(t,0)} 对于时间的偏导数分别为所以,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 对于时间的导数是由于不含时哈密顿量在海森堡绘景的形式与在薛定谔绘景相同,可以忽略下标:将算符的定义式纳入考量,就可以得到海森堡运动方程:在薛定谔绘景里,可观察量 A {displaystyle A} 的期望值为:81在海森堡绘景里,可观察量 A {displaystyle A} 的期望值为注意到态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式:所以,这两种期望值的表述方式等价。算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式涉及到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} ,必须通过其泰勒级数计算,这是个很繁杂的过程,可以利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma)来计算:95对于算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} ,可以得到由于泊松括号与对易算符的关系,在哈密顿力学里,这方程也成立。本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想自由粒子系统,其哈密顿量为:85-86动量 p {displaystyle p} 的海森堡运动方程为这是因为 p {displaystyle p} 与 H {displaystyle H} 对易。所以,动量 p {displaystyle p} 是个常数:位置 x {displaystyle x} 的海森堡运动方程为所以,位置与时间的关系式为换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:注意到位置在不同时间的对易子不等于零:本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想谐振子系统,其哈密顿量为:89, 94-97其中, ω {displaystyle omega } 为谐振子频率。动量算符 p {displaystyle p} 、位置算符 x {displaystyle x} 的海森堡运动方程分别为再求这两个方程对于时间的导数,设定动量算符、位置算符的初始条件分别为则在初始时间,所以,二次微分方程的解答分别是稍加运算,可以得到海森堡绘景里的对易关系:假若 t 1 = t 2 {displaystyle t_{1}=t_{2}} ,则立刻会得到熟悉的正则对易关系。换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:类似地,也可以得到同样的动量与时间的关系式。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 核黄素缺乏症核黄素,又称维生素B2,维他命B2,维生素G。分子式C17H20N4O6。它是人体必需的13种维生素之一,作为维生素B族的成员之一,微溶于水,可溶于氯化钠溶液,易溶于稀的氢氧化钠溶液。1879年英
  • 尸体尸体,是相对于生物的概念,指生物体死亡后遗留的尚未完全腐烂的躯体。至于完全腐坏、仅残余骨骼组织的动物尸体则称为骸骨,亦称白骨、骷髅、遗骨等,其中“骷髅”一词可能带有恐惧
  • 生殖器疣 (尖锐湿疣)尖锐湿疣(英语:Genital warts),也称性器疣或性病疣,俗称椰菜花或菜花,是一种性传播疾病。常见临床症状为菜花状肉芽,常发于生殖器,肛门等部位。尖锐湿疣是由人类乳突病毒(human papil
  • 次原子粒子亚原子粒子,或称次原子粒子。是指比原子还小的粒子。例如:电子、中子、质子、介子、夸克、胶子、光子等等。亚原子粒子,按照参与基本相互作用的性质可以分为:以及:一个不属于规范
  • 伤寒杆菌肠道沙门氏菌(学名:Salmonella enterica)是一种有鞭毛的革兰氏阴性菌及沙门氏菌属的一员。肠道沙门氏菌有着极其大量的血清型:大约有2000个不同的血清型。就如伤寒杆菌(学名Salmo
  • 学术研究研究是用主动和系统方式的过程,是为了发现、解释或校正事实、事件、行为、或理论,或把这样事实、法则或理论作出实际应用。“研究”一词常用来描述关于某一特殊主题的资讯收集
  • 成虫成虫指身体各部位已发育完成,具有生殖能力的动物个体。通常指无脊椎动物,特别是节肢动物门的昆虫纲。昆虫在从幼虫发育至成虫时,通常会经过称做变态的过程。有些昆虫的幼虫和成
  • Christian Dior克丽丝汀·迪奥(法语:Christian Dior),简称迪奥(Dior),是源自法国的国际奢侈品品牌,由法国时装设计师克丽丝汀·迪奥于1946年创立,总部位于巴黎。主要经营时装、配饰、香水、化妆品、
  • 信息映射信息映射 是一种以研究为基础的方法,用来撰写明确、以用户为中心的信息(基于读者需求和信息使用目的)。该方法主要被用于设计和撰写商务沟通及技术传播内容,已被全球范围的企业
  • 平太阳日平太阳或假太阳是一个假想的天体,它每年和真太阳同时从春分点出发,在天赤道上从西向东匀速运行,这个速度相当于真太阳在黄道上运行的平均速度,最后和真太阳同时回到春分点。平太