海森堡绘景

✍ dations ◷ 2024-12-22 22:01:11 #海森堡绘景
海森堡绘景(Heisenberg picture)是量子力学的一种表述,因物理学者维尔纳·海森堡而命名。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。使用海森堡绘景,可以很容易地观察到量子系统与经典系统之间的动力学关系。:第2章第25页海森堡绘景与薛定谔绘景、狄拉克绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化,而像位置、动量一类的对应于可观察量的算符则不会随着时间流易而演化。在狄拉克绘景里,态矢量与对应于可观察量的算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、薛定谔绘景。在量子力学的海森堡绘景里,态矢量 | ψ ⟩ H {displaystyle |psi rangle _{mathcal {H}}} 不含时,而可观察量的算符 A H {displaystyle A_{mathcal {H}}} 则含时,并且满足“海森堡运动方程”::80-84其中, ℏ {displaystyle hbar } 是约化普朗克常数, H {displaystyle H} 是哈密顿量, [ A H , H ] {displaystyle } 是 A H {displaystyle A_{mathcal {H}}} 与 H {displaystyle H} 的对易算符。从某种角度来看,海森堡绘景比薛定谔绘景显得更为自然,更具有基础性,因为,经典力学分析物体运动所使用的物理量是可观察量,例如,位置、动量等等,而海森堡绘景专注的就是这些可观察量随着时间流易的演化。进一步来看,海森堡绘景表述的量子力学与经典力学的相似可以很容易的观察到:只要将对易算符改为泊松括号,海森堡方程立刻就变成了哈密顿力学里的运动方程,其形式表示为:396-397其中, [   ,   ] P o i s s o n {displaystyle _{Poisson}} 是泊松括号。通过狄拉克量子化条件(英语:canonical quantization),可以从哈密顿力学的运动方程得到海森堡运动方程:史东-冯诺伊曼理论(英语:Stone-von Neumann theorem)证明海森堡绘景与薛定谔绘景是等价的。在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从 0 {displaystyle 0} 流易到 t {displaystyle t} ,而经过这段时间间隔,态矢量 | ψ ( 0 ) ⟩ S {displaystyle |psi (0)rangle _{mathcal {S}}} 演化为 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}}} ,这时间演化过程以方程表示为其中, U ( t , 0 ) {displaystyle U(t,0)} 是时间从 0 {displaystyle 0} 流易到 t {displaystyle t} 的时间演化算符。时间演化算符是幺正算符:假设系统的哈密顿量 H {displaystyle H} 不含时,则时间演化算符为:69-71而且,时间演化算符与哈密顿量相互对易:注意到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} 必须通过其泰勒级数计算。在海森堡绘景里,态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 分别定义为由于 U ( t , 0 ) {displaystyle U(t,0)} 、 U † ( t , 0 ) {displaystyle U^{dagger }(t,0)} 对于时间的偏导数分别为所以,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 对于时间的导数是由于不含时哈密顿量在海森堡绘景的形式与在薛定谔绘景相同,可以忽略下标:将算符的定义式纳入考量,就可以得到海森堡运动方程:在薛定谔绘景里,可观察量 A {displaystyle A} 的期望值为:81在海森堡绘景里,可观察量 A {displaystyle A} 的期望值为注意到态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式:所以,这两种期望值的表述方式等价。算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式涉及到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} ,必须通过其泰勒级数计算,这是个很繁杂的过程,可以利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma)来计算:95对于算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} ,可以得到由于泊松括号与对易算符的关系,在哈密顿力学里,这方程也成立。本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想自由粒子系统,其哈密顿量为:85-86动量 p {displaystyle p} 的海森堡运动方程为这是因为 p {displaystyle p} 与 H {displaystyle H} 对易。所以,动量 p {displaystyle p} 是个常数:位置 x {displaystyle x} 的海森堡运动方程为所以,位置与时间的关系式为换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:注意到位置在不同时间的对易子不等于零:本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想谐振子系统,其哈密顿量为:89, 94-97其中, ω {displaystyle omega } 为谐振子频率。动量算符 p {displaystyle p} 、位置算符 x {displaystyle x} 的海森堡运动方程分别为再求这两个方程对于时间的导数,设定动量算符、位置算符的初始条件分别为则在初始时间,所以,二次微分方程的解答分别是稍加运算,可以得到海森堡绘景里的对易关系:假若 t 1 = t 2 {displaystyle t_{1}=t_{2}} ,则立刻会得到熟悉的正则对易关系。换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:类似地,也可以得到同样的动量与时间的关系式。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 元音和谐律元音和谐律(英语:vowel harmony),又称元音调和、元音和谐,是各种黏着语的语言特色之一。这个定律指一个词语的后缀元音一定会跟词根的元音在某种程度上相一致。芬兰·乌戈尔语族
  • 清齿龈擦音清齿龈擦音(voiceless alveolar fricative)是辅音的一种。和此音对应的国际音标符号会因为此音是否有咝音还是无咝音而有所改变:清齿龈有咝音的特征:现代标准汉语(标准官话)中有此
  • 风水传统宗教仪式:神明秘密社会:风水,为五术之一的相术中的相地之术,即临场校察地理的方法,叫地相,古代称勘舆术,目的是用来选择宫殿、村落选址、墓地建设等方法及原则。原意是选择合适
  • 四氯甲烷1.831 g.cm-3, -186 °C (固) 1.809 g.cm-3, -80 °C (固)四氯化碳(化学式:CCl4),也称四氯甲烷或氯烷,常态下为无色液体。过去常用作灭火器中的灭火物质,也曾经是常用的冷却剂。可
  • 杨雄里杨雄里(1941年10月14日-),浙江镇海人,中华人民共和国生物化学家、神经生理学家,中国科学院院士。复旦大学神经生物学研究所所长、上海大学生命科学学院院长。1963年1月,毕业于长春
  • 生理机制肾生理学(renal physiology、拉丁语:rēnēs、"肾")为肾的生理学研究。这包括肾脏的所有的功能,包括葡萄糖、氨基酸,及其它小分子的再吸收;钠、钾及其它电解质的调节;体液平衡(Flui
  • NaBrO次溴酸钠是一种无机化合物,化学式NaBrO,或写作NaOBr,为钠的次溴酸盐。它通常以五水合物(NaBrO·5H2O)的形式存在。 它是一种黄橙色固体,可溶于水。它是次氯酸钠的溴类似物,为普通漂
  • 新店溪新店溪位于台湾北部,是淡水河水系三大支流之一,河长81公里,流域面积921平方公里。主流上源为北势溪,发源于双溪区莺子岭北侧标高约700米处,向西流至新店区龟山会合(英语:Confluence
  • 气压计气压表或称气压计(英语、德语: Barometer)是用来测量气压的仪器,在气象学中被广泛使用。气压表有多种造型和原理。因此它是压力表的一类。气压记是由气压表发展出来的仪器,气压
  • 行星系行星系(英语:planetary system),又称行星系统,是围绕某恒星公转的各种天体的集合,其中包括行星、卫星、小行星、流星体、彗星和宇宙尘埃。太阳和它的行星系统包括地球在内,合称为太