海森堡绘景

✍ dations ◷ 2025-09-19 10:56:34 #海森堡绘景
海森堡绘景(Heisenberg picture)是量子力学的一种表述,因物理学者维尔纳·海森堡而命名。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。使用海森堡绘景,可以很容易地观察到量子系统与经典系统之间的动力学关系。:第2章第25页海森堡绘景与薛定谔绘景、狄拉克绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化,而像位置、动量一类的对应于可观察量的算符则不会随着时间流易而演化。在狄拉克绘景里,态矢量与对应于可观察量的算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、薛定谔绘景。在量子力学的海森堡绘景里,态矢量 | ψ ⟩ H {displaystyle |psi rangle _{mathcal {H}}} 不含时,而可观察量的算符 A H {displaystyle A_{mathcal {H}}} 则含时,并且满足“海森堡运动方程”::80-84其中, ℏ {displaystyle hbar } 是约化普朗克常数, H {displaystyle H} 是哈密顿量, [ A H , H ] {displaystyle } 是 A H {displaystyle A_{mathcal {H}}} 与 H {displaystyle H} 的对易算符。从某种角度来看,海森堡绘景比薛定谔绘景显得更为自然,更具有基础性,因为,经典力学分析物体运动所使用的物理量是可观察量,例如,位置、动量等等,而海森堡绘景专注的就是这些可观察量随着时间流易的演化。进一步来看,海森堡绘景表述的量子力学与经典力学的相似可以很容易的观察到:只要将对易算符改为泊松括号,海森堡方程立刻就变成了哈密顿力学里的运动方程,其形式表示为:396-397其中, [   ,   ] P o i s s o n {displaystyle _{Poisson}} 是泊松括号。通过狄拉克量子化条件(英语:canonical quantization),可以从哈密顿力学的运动方程得到海森堡运动方程:史东-冯诺伊曼理论(英语:Stone-von Neumann theorem)证明海森堡绘景与薛定谔绘景是等价的。在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从 0 {displaystyle 0} 流易到 t {displaystyle t} ,而经过这段时间间隔,态矢量 | ψ ( 0 ) ⟩ S {displaystyle |psi (0)rangle _{mathcal {S}}} 演化为 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}}} ,这时间演化过程以方程表示为其中, U ( t , 0 ) {displaystyle U(t,0)} 是时间从 0 {displaystyle 0} 流易到 t {displaystyle t} 的时间演化算符。时间演化算符是幺正算符:假设系统的哈密顿量 H {displaystyle H} 不含时,则时间演化算符为:69-71而且,时间演化算符与哈密顿量相互对易:注意到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} 必须通过其泰勒级数计算。在海森堡绘景里,态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 分别定义为由于 U ( t , 0 ) {displaystyle U(t,0)} 、 U † ( t , 0 ) {displaystyle U^{dagger }(t,0)} 对于时间的偏导数分别为所以,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 对于时间的导数是由于不含时哈密顿量在海森堡绘景的形式与在薛定谔绘景相同,可以忽略下标:将算符的定义式纳入考量,就可以得到海森堡运动方程:在薛定谔绘景里,可观察量 A {displaystyle A} 的期望值为:81在海森堡绘景里,可观察量 A {displaystyle A} 的期望值为注意到态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式:所以,这两种期望值的表述方式等价。算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式涉及到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} ,必须通过其泰勒级数计算,这是个很繁杂的过程,可以利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma)来计算:95对于算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} ,可以得到由于泊松括号与对易算符的关系,在哈密顿力学里,这方程也成立。本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想自由粒子系统,其哈密顿量为:85-86动量 p {displaystyle p} 的海森堡运动方程为这是因为 p {displaystyle p} 与 H {displaystyle H} 对易。所以,动量 p {displaystyle p} 是个常数:位置 x {displaystyle x} 的海森堡运动方程为所以,位置与时间的关系式为换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:注意到位置在不同时间的对易子不等于零:本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想谐振子系统,其哈密顿量为:89, 94-97其中, ω {displaystyle omega } 为谐振子频率。动量算符 p {displaystyle p} 、位置算符 x {displaystyle x} 的海森堡运动方程分别为再求这两个方程对于时间的导数,设定动量算符、位置算符的初始条件分别为则在初始时间,所以,二次微分方程的解答分别是稍加运算,可以得到海森堡绘景里的对易关系:假若 t 1 = t 2 {displaystyle t_{1}=t_{2}} ,则立刻会得到熟悉的正则对易关系。换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:类似地,也可以得到同样的动量与时间的关系式。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • CACNA1Sn/an/an/an/an/an/an/an/an/an/aCav1.1又称为L型钙通道α1亚基(calcium channel, voltage-dependent, L type, alpha 1S subunit,CACNA1S),为一种由CACNA1S基因翻译而成的蛋白质
  • 网团菌属网团菌门(Dictyoglomi)是一类细菌,只包含一个属,即网团菌属(Dictyoglomus)。它是极端嗜热菌,营化能有机营养,即利用有机物获得能量。这种生物可以制造木聚糖酶,将木聚糖(xylan)分解成木
  • 偏磷酸偏磷酸(HPO3)是一种易潮解固体,有剧毒。偏磷酸与磷酸有相同的酸酐:五氧化二磷,不同的地方在于五氧化二磷与热水反应生成磷酸,而与冷水反应生成偏磷酸(或聚偏磷酸(HPO3)n,如三聚偏磷
  • 肠毒素肠毒素(Enterotoxin),为葡萄球菌引起食物中毒的致病物质,根据抗原性分为A-I,8个血清型。由蛋白质组成,可溶于水,耐热。另外,此毒素还可引起猴、猫等动物引发呕吐现象,为毒素作用于肠道
  • 教皇宫教皇宫(法语:Palais des Papes)是座落于法国南部城市阿维尼翁的一座古老宫殿,为欧洲最大、最重要的中世纪哥特式建筑。教皇宫不仅是教皇的宫殿,也是一座要塞。在十四世纪期间,阿维
  • 霍奇金艾伦·劳埃德·霍奇金爵士,OM,KBE,FRS(英语:Sir Alan Lloyd Hodgkin,1914年2月5日-1998年12月20日),英国生理学家与生物物理学家,与安德鲁·赫胥黎(Andrew Fielding Huxley)因为共同研究
  • 线圈炮线圈炮(Coilgun)是一种由一个或多个线圈组成的投射加速器,以同步线性马达的方式将磁性抛射物加速到极高的速度。这种装置也被称为高斯炮(Gauss gun),是为了纪念用数学方法描述电磁
  • 徐建中徐建中(1940年3月3日-),中国工程热物理专家。原籍辽宁北镇,生于江西吉安。1963年毕业于中国科学技术大学。1967年中国科学院力学研究所研究生毕业。中国科学院工程热物理研究所研
  • 广场舞广场舞,或称广场健身舞,是一种行进间有氧健身操,是居民自发地以健身为目的在广场、院坝等开敞空间上进行的富有韵律的舞蹈,通常伴有高分贝、节奏感强的音乐伴奏,多为徒手健身,也有
  • 地磁学地磁场是源自于地球内部,并延伸到太空的磁场。磁场在地表上的强度在25-65微特斯拉(即0.25至0.65高斯)之间。粗略地说,地磁场是一个与地球自转轴呈11°夹角的磁偶极子,相当于在地球