海森堡绘景

✍ dations ◷ 2025-10-11 03:02:53 #海森堡绘景
海森堡绘景(Heisenberg picture)是量子力学的一种表述,因物理学者维尔纳·海森堡而命名。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。使用海森堡绘景,可以很容易地观察到量子系统与经典系统之间的动力学关系。:第2章第25页海森堡绘景与薛定谔绘景、狄拉克绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化,而像位置、动量一类的对应于可观察量的算符则不会随着时间流易而演化。在狄拉克绘景里,态矢量与对应于可观察量的算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84为了便利分析,位于下标的符号 H {displaystyle {}_{mathcal {H}}} 、 S {displaystyle {}_{mathcal {S}}} 分别标记海森堡绘景、薛定谔绘景。在量子力学的海森堡绘景里,态矢量 | ψ ⟩ H {displaystyle |psi rangle _{mathcal {H}}} 不含时,而可观察量的算符 A H {displaystyle A_{mathcal {H}}} 则含时,并且满足“海森堡运动方程”::80-84其中, ℏ {displaystyle hbar } 是约化普朗克常数, H {displaystyle H} 是哈密顿量, [ A H , H ] {displaystyle } 是 A H {displaystyle A_{mathcal {H}}} 与 H {displaystyle H} 的对易算符。从某种角度来看,海森堡绘景比薛定谔绘景显得更为自然,更具有基础性,因为,经典力学分析物体运动所使用的物理量是可观察量,例如,位置、动量等等,而海森堡绘景专注的就是这些可观察量随着时间流易的演化。进一步来看,海森堡绘景表述的量子力学与经典力学的相似可以很容易的观察到:只要将对易算符改为泊松括号,海森堡方程立刻就变成了哈密顿力学里的运动方程,其形式表示为:396-397其中, [   ,   ] P o i s s o n {displaystyle _{Poisson}} 是泊松括号。通过狄拉克量子化条件(英语:canonical quantization),可以从哈密顿力学的运动方程得到海森堡运动方程:史东-冯诺伊曼理论(英语:Stone-von Neumann theorem)证明海森堡绘景与薛定谔绘景是等价的。在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从 0 {displaystyle 0} 流易到 t {displaystyle t} ,而经过这段时间间隔,态矢量 | ψ ( 0 ) ⟩ S {displaystyle |psi (0)rangle _{mathcal {S}}} 演化为 | ψ ( t ) ⟩ S {displaystyle |psi (t)rangle _{mathcal {S}}} ,这时间演化过程以方程表示为其中, U ( t , 0 ) {displaystyle U(t,0)} 是时间从 0 {displaystyle 0} 流易到 t {displaystyle t} 的时间演化算符。时间演化算符是幺正算符:假设系统的哈密顿量 H {displaystyle H} 不含时,则时间演化算符为:69-71而且,时间演化算符与哈密顿量相互对易:注意到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} 必须通过其泰勒级数计算。在海森堡绘景里,态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 分别定义为由于 U ( t , 0 ) {displaystyle U(t,0)} 、 U † ( t , 0 ) {displaystyle U^{dagger }(t,0)} 对于时间的偏导数分别为所以,算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 对于时间的导数是由于不含时哈密顿量在海森堡绘景的形式与在薛定谔绘景相同,可以忽略下标:将算符的定义式纳入考量,就可以得到海森堡运动方程:在薛定谔绘景里,可观察量 A {displaystyle A} 的期望值为:81在海森堡绘景里,可观察量 A {displaystyle A} 的期望值为注意到态矢量 | ψ ( t ) ⟩ H {displaystyle |psi (t)rangle _{mathcal {H}}} 、算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式:所以,这两种期望值的表述方式等价。算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} 的定义式涉及到指数函数 e − i H t / ℏ {displaystyle e^{-iHt/hbar }} ,必须通过其泰勒级数计算,这是个很繁杂的过程,可以利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma)来计算:95对于算符 A H ( t ) {displaystyle A_{mathcal {H}}(t)} ,可以得到由于泊松括号与对易算符的关系,在哈密顿力学里,这方程也成立。本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想自由粒子系统,其哈密顿量为:85-86动量 p {displaystyle p} 的海森堡运动方程为这是因为 p {displaystyle p} 与 H {displaystyle H} 对易。所以,动量 p {displaystyle p} 是个常数:位置 x {displaystyle x} 的海森堡运动方程为所以,位置与时间的关系式为换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:注意到位置在不同时间的对易子不等于零:本节运算只涉及海森堡绘景,为了简便起见,忽略下标 H {displaystyle {mathcal {H}}} 。设想谐振子系统,其哈密顿量为:89, 94-97其中, ω {displaystyle omega } 为谐振子频率。动量算符 p {displaystyle p} 、位置算符 x {displaystyle x} 的海森堡运动方程分别为再求这两个方程对于时间的导数,设定动量算符、位置算符的初始条件分别为则在初始时间,所以,二次微分方程的解答分别是稍加运算,可以得到海森堡绘景里的对易关系:假若 t 1 = t 2 {displaystyle t_{1}=t_{2}} ,则立刻会得到熟悉的正则对易关系。换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:类似地,也可以得到同样的动量与时间的关系式。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 叶尼塞语系叶尼塞语系(Yeniseic 或 Yenisei-Ostyak)是分布在西伯利亚中部叶尼塞河流域的一个语族。包括7种语言:其中的Yug、Pumpokol、Arin和Assan早在18世纪消亡了,我们对这些语言所知甚
  • 克劳斯苯克劳斯苯(Claus' benzene)是描述苯的分子结构的一种假设,由德国化学家克劳斯(英语:Adolf Karl Ludwig Claus)于1867年提出。这种结构又称对位键结构式,分子中每个碳原子与相邻两个
  • 仿生学仿生学(Bionics)是模仿生物的特殊本领的一门科学。仿生学通过了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。1958年8月由美国的J.E.Steele首先提出。
  • 海藻森林海藻林是由海带目(Laminariales)大型褐藻所构成的海底森林,为最富有丰富生产力与多样性的地球生态系统。较小片的海藻林又被称为海藻床。海藻林分布于温带到极地地区的沿岸海域
  • 绞肉(或称碎肉、肉末、肉酱,潮汕话为肉糙,古代称醢)是用刀子或绞肉机切碎的肉,可以用任何肉类制成,是一种加工食品。绞肉通常是用较零碎、便宜的肉来制成,并可能加入食品添加物。绞
  • 坎比亚区坎比亚区(英文:Kambia District)是塞拉利昂14区之一,首府坎比亚 (英文:Kambia).
  • 柯尔伯-施密特反应科尔贝-施密特反应(德语:Kolbe-Schmitt-Reaktion)是干燥的酚钠或酚钾与二氧化碳在加温(125-150°C)加压(100atm)下生成羟基苯甲酸的反应。 它是向芳环上引入羧基的一种常用方法,常用
  • 奇摩站奇摩站(KIMO),为台湾一家入口搜寻网站,1997年8月设立,属精诚资讯关系事业。其前身为精诚资讯代理销售网景浏览器中文版而成立的网站。根据ACNielsen Netwatch在2000年第一季所做
  • 数字媒体数字媒体(digital media)是指以数字形式编码的传播媒体数字媒体可以在计算机上创建、浏览、分发、修改、存储,包括计算机程序和软件、数字影像、数字视频、互联网网页、数据和
  • 长期的长期变化是时间系列在长时期的非周期变化(参见分解时间系列)。无论何者被查觉是长期变化或是与时间尺度无关:在超越世纪的时间尺度上,长期变化在数百万年的时间尺度下可能是周期