首页 >
海森堡绘景
✍ dations ◷ 2025-04-03 17:21:32 #海森堡绘景
海森堡绘景(Heisenberg picture)是量子力学的一种表述,因物理学者维尔纳·海森堡而命名。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。使用海森堡绘景,可以很容易地观察到量子系统与经典系统之间的动力学关系。:第2章第25页海森堡绘景与薛定谔绘景、狄拉克绘景不同。在薛定谔绘景里,描述量子系统的态矢量随着时间流易而演化,而像位置、动量一类的对应于可观察量的算符则不会随着时间流易而演化。在狄拉克绘景里,态矢量与对应于可观察量的算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84为了便利分析,位于下标的符号
H
{displaystyle {}_{mathcal {H}}}
、
S
{displaystyle {}_{mathcal {S}}}
分别标记海森堡绘景、薛定谔绘景。在量子力学的海森堡绘景里,态矢量
|
ψ
⟩
H
{displaystyle |psi rangle _{mathcal {H}}}
不含时,而可观察量的算符
A
H
{displaystyle A_{mathcal {H}}}
则含时,并且满足“海森堡运动方程”::80-84其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,
H
{displaystyle H}
是哈密顿量,
[
A
H
,
H
]
{displaystyle }
是
A
H
{displaystyle A_{mathcal {H}}}
与
H
{displaystyle H}
的对易算符。从某种角度来看,海森堡绘景比薛定谔绘景显得更为自然,更具有基础性,因为,经典力学分析物体运动所使用的物理量是可观察量,例如,位置、动量等等,而海森堡绘景专注的就是这些可观察量随着时间流易的演化。进一步来看,海森堡绘景表述的量子力学与经典力学的相似可以很容易的观察到:只要将对易算符改为泊松括号,海森堡方程立刻就变成了哈密顿力学里的运动方程,其形式表示为:396-397其中,
[
,
]
P
o
i
s
s
o
n
{displaystyle _{Poisson}}
是泊松括号。通过狄拉克量子化条件(英语:canonical quantization),可以从哈密顿力学的运动方程得到海森堡运动方程:史东-冯诺伊曼理论(英语:Stone-von Neumann theorem)证明海森堡绘景与薛定谔绘景是等价的。在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从
0
{displaystyle 0}
流易到
t
{displaystyle t}
,而经过这段时间间隔,态矢量
|
ψ
(
0
)
⟩
S
{displaystyle |psi (0)rangle _{mathcal {S}}}
演化为
|
ψ
(
t
)
⟩
S
{displaystyle |psi (t)rangle _{mathcal {S}}}
,这时间演化过程以方程表示为其中,
U
(
t
,
0
)
{displaystyle U(t,0)}
是时间从
0
{displaystyle 0}
流易到
t
{displaystyle t}
的时间演化算符。时间演化算符是幺正算符:假设系统的哈密顿量
H
{displaystyle H}
不含时,则时间演化算符为:69-71而且,时间演化算符与哈密顿量相互对易:注意到指数函数
e
−
i
H
t
/
ℏ
{displaystyle e^{-iHt/hbar }}
必须通过其泰勒级数计算。在海森堡绘景里,态矢量
|
ψ
(
t
)
⟩
H
{displaystyle |psi (t)rangle _{mathcal {H}}}
、算符
A
H
(
t
)
{displaystyle A_{mathcal {H}}(t)}
分别定义为由于
U
(
t
,
0
)
{displaystyle U(t,0)}
、
U
†
(
t
,
0
)
{displaystyle U^{dagger }(t,0)}
对于时间的偏导数分别为所以,算符
A
H
(
t
)
{displaystyle A_{mathcal {H}}(t)}
对于时间的导数是由于不含时哈密顿量在海森堡绘景的形式与在薛定谔绘景相同,可以忽略下标:将算符的定义式纳入考量,就可以得到海森堡运动方程:在薛定谔绘景里,可观察量
A
{displaystyle A}
的期望值为:81在海森堡绘景里,可观察量
A
{displaystyle A}
的期望值为注意到态矢量
|
ψ
(
t
)
⟩
H
{displaystyle |psi (t)rangle _{mathcal {H}}}
、算符
A
H
(
t
)
{displaystyle A_{mathcal {H}}(t)}
的定义式:所以,这两种期望值的表述方式等价。算符
A
H
(
t
)
{displaystyle A_{mathcal {H}}(t)}
的定义式涉及到指数函数
e
−
i
H
t
/
ℏ
{displaystyle e^{-iHt/hbar }}
,必须通过其泰勒级数计算,这是个很繁杂的过程,可以利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma)来计算:95对于算符
A
H
(
t
)
{displaystyle A_{mathcal {H}}(t)}
,可以得到由于泊松括号与对易算符的关系,在哈密顿力学里,这方程也成立。本节运算只涉及海森堡绘景,为了简便起见,忽略下标
H
{displaystyle {mathcal {H}}}
。设想自由粒子系统,其哈密顿量为:85-86动量
p
{displaystyle p}
的海森堡运动方程为这是因为
p
{displaystyle p}
与
H
{displaystyle H}
对易。所以,动量
p
{displaystyle p}
是个常数:位置
x
{displaystyle x}
的海森堡运动方程为所以,位置与时间的关系式为换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:注意到位置在不同时间的对易子不等于零:本节运算只涉及海森堡绘景,为了简便起见,忽略下标
H
{displaystyle {mathcal {H}}}
。设想谐振子系统,其哈密顿量为:89, 94-97其中,
ω
{displaystyle omega }
为谐振子频率。动量算符
p
{displaystyle p}
、位置算符
x
{displaystyle x}
的海森堡运动方程分别为再求这两个方程对于时间的导数,设定动量算符、位置算符的初始条件分别为则在初始时间,所以,二次微分方程的解答分别是稍加运算,可以得到海森堡绘景里的对易关系:假若
t
1
=
t
2
{displaystyle t_{1}=t_{2}}
,则立刻会得到熟悉的正则对易关系。换另一种方法,算符随着时间流易而演化的方程为利用贝克-豪斯多夫引理(英语:Baker-Hausdorff lemma),注意到以下两个对易关系式:将这两个对易关系式代入,可以得到同样的位置与时间的关系式:类似地,也可以得到同样的动量与时间的关系式。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339
相关
- 猪家猪(学名:Sus scrofa domestica)是野猪被人类驯化后所形成的亚种,獠牙较野猪短,是人类的家畜之一,目的是从猪身上取得猪肉、猪脚等食材。人类蓄养家猪的历史相当悠久,不过至16世纪
- 乔治·纳波利塔诺乔治·纳波利塔诺(意大利语:Giorgio Napolitano,1925年6月29日-),出生于意大利那不勒斯,意大利政治人物,现任终身参议员,前总统。2005年,纳波利塔诺成为终身参议员。2006年5月,他当选为
- 奈米粒子纳米颗粒(nanoparticle),指纳米量级的微观颗粒。它被定义为至少在一个维度上小于100纳米的颗粒。小于10纳米的半导体纳米颗粒,由于其电子能级量子化,又被称为量子点。纳米颗粒具
- 博莱罗《波莱罗》(Boléro)是法国作曲家莫里斯·拉威尔最后的一部舞曲作品,创作于1928年。《波莱罗》是拉威尔舞蹈音乐方面的一部最优秀的作品,同时又是二十世纪法国交响音乐的一部杰
- 杜省杜省(法语:Doubs)是法国勃艮第-弗朗什-孔泰大区所辖的省份,东邻瑞士,是法国著名的工业省份。该省编号为25,首府位于贝桑松。私人国家沙兹尔共和国位于此省。5个海外省及大区
- 欧盟人口第二多的成员欧洲联盟国家人口列表由欧洲统计局和政府等提供之各国家人口数据排序。
- 气单胞菌科气单胞菌属 Aeromonas 甲苯单胞菌属 Tolumonas气单胞菌科(Aeromonadaceae)属于革兰氏阴性菌。该科内的物种均为厌氧、杆状,大多出现于入海口及淡水内,亦可于粪便及污水中发现其
- Mg(CHsub3/sub)sub2/sub二甲基镁是一种有机镁化合物,化学式为(CH3)2Mg,为白色易自燃的固体。二甲基镁可以由不少于化学计量比的二
- 人间佛教人间佛教是近代汉传佛教的一场现代化改革运动。民国初年,由于佛教衰退示微,太虚大师开始倡导“人生佛教”,作为推动佛教现代化改革的一个运动, 为因应儒家伦理、基督教慈善、科
- 阴天阴天或称阴,是指天空中,中、低云层总量大于95%所产生的气象现象。云层通常呈灰色或黑色,比普通情况下的要厚。阴天持续的时间从几小时到数天不等,短时间的通常伴随有雨,此事随着