首页 >
欧几里得几何
✍ dations ◷ 2025-11-28 08:06:34 #欧几里得几何
欧几里得几何指按照欧几里得的《几何原本》构造的几何学。欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设(英语:Point–line–plane postulate)。数学家也用这一术语表示具有相似性质的高维几何。其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利数学家波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即非欧几何(non-Euclidean geometry)。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的真命题。欧几里得平面几何的五条公理(公设)是:第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何(英语:Absolute geometry))。从另一方面讲,欧几里得几何的五条公理(公设)并不完备。例如,该几何中的定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统(英语:Hilbert's axioms)。欧几里得还提出了五个一般概念,也可以作为公理。当然,之后他还使用量的其他性质。如今,欧几里得几何的构造通常不是通过公理化方法,而是通过解析几何。通过这种方法,可以像证明定理一样证明欧几里得几何(或非欧几里得几何)中的公理。这一方法没有公理方法那么漂亮,但绝对简练。首先,定义点的集合为实数对
(
x
,
y
)
{displaystyle (x,y)}
的集合。给定两个点
P
=
(
x
,
y
)
{displaystyle P=(x,y)}
和
Q
=
(
z
,
t
)
{displaystyle Q=(z,t)}
,定义距离:这就是欧几里得度量。所有其他概念,如直线、角、圆可以通过作为实数对的点和之间的距离来定义。例如通过点
P
{displaystyle P}
和
Q
{displaystyle Q}
的直线可以定义成点的集合
A
{displaystyle A}
满足
相关
- 高热高热(英语:hyperthermia),亦称体温过高是指由于体温调节失衡而导致的体温升高的症状。当身体吸收热量高于散发热量时,这种症状便会出现,而若是出现急剧的体温升高症状的话,则需送往
- 提比里亚提比里亚或太巴列(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova"
- 佩特罗尼乌斯盖厄斯·佩特罗尼乌斯·阿尔比特(Gaius Petronius Arbiter,27年-66年)是一位罗马帝国朝臣(英语:Courtier)、抒情诗人与小说家,生活于罗马皇帝尼禄统治时期。讽刺小说《爱情神话(英语:T
- 外消旋体外消旋混合物(英语:racemic mixture、racemate,或称为 外消旋体)是等物质的量的一对对映体混合后得到的组成物。第一个制得的外消旋体是路易·巴斯德制得的酒石酸的外消旋混合物
- NCAA国家大学体育协会(英语:National Collegiate Athletic Association,缩写:NCAA)是美国一家非盈利组织,总部位于印第安纳州印第安纳波利斯。国家大学体育协会管理着1,281个大专院校
- 罗姆语罗姆语(罗姆语:Romani,又称吉卜赛语或茨冈语)是罗姆人和信德(Sinti)社群的语言。罗姆语属于印度-雅利安语支语言。分析罗姆语得知,它与印度北部的语言相近,尤其是旁遮普语。在语言学
- 新石器时期该列表列举了由考古发掘所发现的中国新石器文化,按时间顺序排列,并且以图例方式大纲列出。对这些文化的时间断代有不同意见,所以时间选取都是假设性的:12000-6000转年、东胡林遗
- 迈克尔·格伦斯坦迈克尔·格伦斯坦(英语:Michael Grunstein,1946年-),美国生物化学家, 加利福尼亚大学洛杉矶分校医学院教授。格伦斯坦在麦吉尔大学获得学士学位,在英国爱丁堡大学获博士学位。他在
- ddTTP双脱氧核苷酸(英语:Dideoxynucleotide)是DNA聚合酶的链终止性抑制剂,应用于DNA测序桑格法。这些核苷酸亦被称为2',3'-双脱氧核苷酸,常被简写为ddNTPs(ddGTP、ddATP、ddTTP与ddCTP)
- 方便记忆记忆术(英语:Mnemonic)又译助忆,是一种辅助记忆的方法,例如诗、韵文或是图像。人们在日常生活中经常使用缩写、口诀来记忆一些复杂的内容。例如,学生在学习眼球的解剖结构的时候会
