首页 >
守恒量
✍ dations ◷ 2025-01-23 05:59:55 #守恒量
在经典力学里,对于一个动力系统,随着时间的演进,所有保持不变的物理量都称为守恒量(conserved quantity),又称为运动常数。由于很多物理定律会表达某种守恒行为,对应的守恒量时常会出现于真实系统。例如,假设在某系统内涉及的作用力是保守力,则此系统的能量是守恒量。假设涉及的作用力是有心力,则此系统的角动量是守恒量。根据动量守恒定律,假若一个粒子所感受到的外力,其总矢量和为零,则这粒子的动量保持不变,是一个守恒量。在这状况下,粒子会呈匀速运动或著静止不变。以方程表达,假设粒子感受到的合外力为零:根据牛顿第二定律,合外力与动量
p
{displaystyle mathbf {p} }
的关系式为所以,动量是一个常数,是一个守恒量。根据角动量守恒定律,假若一个粒子所感受到的外力矩,其其总矢量和为零,则这粒子的角动量保持不变,是一个守恒量。在这状况下,粒子会呈匀角运动或直线运动。以方程表达,假设粒子感受到的合外力矩
τ
{displaystyle {boldsymbol {tau }}}
为零:合外力矩与角动量
ℓ
{displaystyle {boldsymbol {ell }}}
的关系式为所以,角动量是一个常数,是一个守恒量。在经典力学里,粒子的能量定义为动能与势能的代数和。根据能量守恒定律,假若一个粒子所感受到的外力都是保守力,则这粒子的能量保持不变,是一个守恒量。以方程表达,能量
E
{displaystyle E}
为动能
T
{displaystyle T}
与势能
V
{displaystyle V}
的代数和粒子的动能与运动速度
v
{displaystyle mathbf {v} }
的关系为其中,
m
{displaystyle m}
是粒子的质量。而对于保守系统,势能与净保守力
F
{displaystyle mathbf {F} }
的关系为能量对于时间的导数为所以,能量是一个常数,是一个守恒量。思考一个物理系统,其拉格朗日量是动能
T
{displaystyle T}
与势能
V
{displaystyle V}
的差值:通常,动能的参数为广义速度
q
˙
1
,
q
˙
2
,
q
˙
3
,
…
,
q
˙
N
{displaystyle {dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N}}
(符号上方的点号表示对于时间
t
{displaystyle t}
的全导数),而势能的参数为广义坐标
q
1
,
q
2
,
q
3
,
…
,
q
N
;
t
{displaystyle q_{1},q_{2},q_{3},dots ,q_{N};t}
,所以,拉格朗日量的参数为
q
1
,
q
2
,
q
3
,
…
,
q
N
;
q
˙
1
,
q
˙
2
,
q
˙
3
,
…
,
q
˙
N
;
t
{displaystyle q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N};t}
。这物理系统的运动轨道,以拉格朗日方程表示为其中,
t
{displaystyle t}
是时间。拉格朗日量对于时间的全导数为将拉格朗日方程代入,可以得到定义“能量函数”
h
(
q
1
,
q
2
,
q
3
,
…
;
q
˙
1
,
q
˙
2
,
q
˙
3
,
…
;
t
)
{displaystyle {mathit {h}}(q_{1},q_{2},q_{3},dots ;{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ;t)}
为则能量函数与拉格朗日量的关系为假若拉格朗日量显性地与时间无关,
∂
L
∂
t
=
0
{displaystyle {frac {partial {mathcal {L}}}{partial t}}=0}
,
L
=
L
(
q
1
,
q
2
,
q
3
,
…
,
q
N
;
q
˙
1
,
q
˙
2
,
q
˙
3
,
…
,
q
˙
N
)
{displaystyle {mathcal {L}}={mathcal {L}}(q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N})}
,则能量函数是一个常数,是一个守恒量。设定
h
=
E
{displaystyle {mathit {h}}=E}
,这常数
E
{displaystyle E}
可以称为这物理系统的能量。因此,这物理系统的能量守恒。
相关
- 趋性趋性(英语:taxis,或称为趋向性)是一生物(或细胞)天生的行为反应,指其对一指向性刺激(由特定方向给的刺激),而会有趋进(正趋性)或远离(负趋性)刺激源的动作。趋性和向性不同,生物的
- 天鹅天鹅属(学名:Cygnus)是雁形目鸭科的一个属。这一属的鸟类是游禽中体形最大的种类,又名鹄或白鹄,被俗称为“天鹅”。天鹅属在除非洲以外的各大洲都有野生种或亚种分布。白色的四个
- 解剖学史解剖学史古代埃及人在医学上十分出色。有关外科的纸草书记载了他们对疾病的认识。最早的纸莎草文献是约1600BC的《艾德温·史密斯纸草文稿》。汉谟拉比法典对外科手术的相关
- 主动脉夹层主动脉夹层(英语:aortic dissection;法语:dissection aortique;德语:Aortendissektion),又译为“主动脉剥离”或“心血管动脉撕裂”,是因为主动脉血管内膜(英语:Tunica intima)受伤,使得
- 政府机关政治主题日本国政府(日语:日本国政府/にほんこくせいふ Nihon-koku Seifu */?)是日本的治权机构,日语口语常直接以“政府”称之,通常指中央行政部门,但广义上也包括中央立法部门
- 语言学家语言学家是指研究语言学并有一定造诣的学者。下列是语言学家的列表(List of linguists),可以参考结构主义的当代语言学家。
- 超嗜热古菌超嗜热生物指能在极热的环境(60°C以上)中生活的生物。其生长最适温度通常在80~110°C,而2003年发现的一株古菌“菌株121”甚至能在和灭菌锅相同的温度,即121°C下,24个小时内,细
- 地下连续墙地下连续墙(slurry wall)也翻译为连续壁或槽壁,是在地下工程施工时建设的处于地表之下的钢筋混凝土墙,用于支撑周围的软土层、挡水等目的。这项技术典型用于建筑物的基坑的四壁
- UTC-7UTC−07:00时区比协调世界时慢7小时,使用区域如下:
- 省会城市中华人民共和国共分为34个一级行政区,即4个直辖市、23个省、5个自治区、2个特别行政区。除了直辖市和特别行政区以外,每一个行政省都有一个省会。省会,或称省治、制所、省汇,清