守恒量

✍ dations ◷ 2025-09-18 07:04:03 #守恒量
在经典力学里,对于一个动力系统,随着时间的演进,所有保持不变的物理量都称为守恒量(conserved quantity),又称为运动常数。由于很多物理定律会表达某种守恒行为,对应的守恒量时常会出现于真实系统。例如,假设在某系统内涉及的作用力是保守力,则此系统的能量是守恒量。假设涉及的作用力是有心力,则此系统的角动量是守恒量。根据动量守恒定律,假若一个粒子所感受到的外力,其总矢量和为零,则这粒子的动量保持不变,是一个守恒量。在这状况下,粒子会呈匀速运动或著静止不变。以方程表达,假设粒子感受到的合外力为零:根据牛顿第二定律,合外力与动量 p {displaystyle mathbf {p} } 的关系式为所以,动量是一个常数,是一个守恒量。根据角动量守恒定律,假若一个粒子所感受到的外力矩,其其总矢量和为零,则这粒子的角动量保持不变,是一个守恒量。在这状况下,粒子会呈匀角运动或直线运动。以方程表达,假设粒子感受到的合外力矩 τ {displaystyle {boldsymbol {tau }}} 为零:合外力矩与角动量 ℓ {displaystyle {boldsymbol {ell }}} 的关系式为所以,角动量是一个常数,是一个守恒量。在经典力学里,粒子的能量定义为动能与势能的代数和。根据能量守恒定律,假若一个粒子所感受到的外力都是保守力,则这粒子的能量保持不变,是一个守恒量。以方程表达,能量 E {displaystyle E} 为动能 T {displaystyle T} 与势能 V {displaystyle V} 的代数和粒子的动能与运动速度 v {displaystyle mathbf {v} } 的关系为其中, m {displaystyle m} 是粒子的质量。而对于保守系统,势能与净保守力 F {displaystyle mathbf {F} } 的关系为能量对于时间的导数为所以,能量是一个常数,是一个守恒量。思考一个物理系统,其拉格朗日量是动能 T {displaystyle T} 与势能 V {displaystyle V} 的差值:通常,动能的参数为广义速度 q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N {displaystyle {dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N}} (符号上方的点号表示对于时间 t {displaystyle t} 的全导数),而势能的参数为广义坐标 q 1 , q 2 , q 3 , … , q N ; t {displaystyle q_{1},q_{2},q_{3},dots ,q_{N};t} ,所以,拉格朗日量的参数为 q 1 , q 2 , q 3 , … , q N ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N ; t {displaystyle q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N};t} 。这物理系统的运动轨道,以拉格朗日方程表示为其中, t {displaystyle t} 是时间。拉格朗日量对于时间的全导数为将拉格朗日方程代入,可以得到定义“能量函数” h ( q 1 , q 2 , q 3 , … ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … ; t ) {displaystyle {mathit {h}}(q_{1},q_{2},q_{3},dots ;{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ;t)} 为则能量函数与拉格朗日量的关系为假若拉格朗日量显性地与时间无关, ∂ L ∂ t = 0 {displaystyle {frac {partial {mathcal {L}}}{partial t}}=0} , L = L ( q 1 , q 2 , q 3 , … , q N ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N ) {displaystyle {mathcal {L}}={mathcal {L}}(q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N})} ,则能量函数是一个常数,是一个守恒量。设定 h = E {displaystyle {mathit {h}}=E} ,这常数 E {displaystyle E} 可以称为这物理系统的能量。因此,这物理系统的能量守恒。

相关

  • 平滑肌平滑肌,是非横纹肌的肌肉组织。在人体,平滑肌分布在动脉和静脉血管管壁、膀胱、子宫、男性和女性生殖道、消化道、呼吸道、眼睛的睫状肌(英语:Ciliary muscle)和虹膜。平滑肌与骨
  • 黄疸黄疸(英:jaundice、icterus)又称黄胆,俗称黄病,是因为体内胆红素过高,造成皮肤及巩膜发黄或是发绿的症状,一般会伴随发痒、粪便苍白及尿液颜色偏深的情形。新生儿黄疸是出生后前三
  • 瓦亨罗特瓦亨罗特(德语:Wachenroth)是德国巴伐利亚州的一个市镇。总面积23.17平方公里,总人口2188人,其中男性1136人,女性1052人(2011年12月31日),人口密度94人/平方公里。
  • 手技疗法操作治疗学(英语:Manual therapy,manipulative therapy,或manual & manipulative therapy),又称手法治疗、徒手治疗、手技疗法,一种由物理治疗师、按摩师、整脊师与骨疗师所采用的
  • 专家统治专家统治(Technocracy),是一种由在技术上拥有高水平的专家控制一切决策的政体。在这种政体中,拥有知识和技术的科学家与工程师取代了传统政体中政治家,商人和经济学家的地位。在
  • 雷文霍克安东尼‧菲利普斯·范‧列文虎克(荷兰语:Antonie Philips van Leeuwenhoek;1632年10月24日-1723年8月26日)是一位荷兰贸易商与科学家,有光学显微镜与微生物学之父的称号。最为著名
  • 非线性声学非线性声学与线性声学相对,研究的是声波在运动非线性和介质非线性无法忽略的情况下的声学现象。在非线性声学中,会出现许多新现象。
  • 硫替比妥硫替比妥(INN:Thionarcex)是种短效巴比妥酸盐类麻醉药。本药可作为兽药使用。
  • 名词委全国科学技术名词审定委员会,简称全国科技名词委、名词委,是经中华人民共和国国务院授权,代表中华人民共和国进行科技名词审定、公布的权威性政府机构。原称全国自然科学名词审
  • 神经束膜神经束膜为神经中保护性结缔组织的第二层,为一光滑透明的薄膜,将神经纤维分隔成束。神经束膜可轻易地与其包覆的神经纤维分离,以管状外鞘的形式独立出来。神经束膜外层为结缔组