守恒量

✍ dations ◷ 2025-12-05 03:14:41 #守恒量
在经典力学里,对于一个动力系统,随着时间的演进,所有保持不变的物理量都称为守恒量(conserved quantity),又称为运动常数。由于很多物理定律会表达某种守恒行为,对应的守恒量时常会出现于真实系统。例如,假设在某系统内涉及的作用力是保守力,则此系统的能量是守恒量。假设涉及的作用力是有心力,则此系统的角动量是守恒量。根据动量守恒定律,假若一个粒子所感受到的外力,其总矢量和为零,则这粒子的动量保持不变,是一个守恒量。在这状况下,粒子会呈匀速运动或著静止不变。以方程表达,假设粒子感受到的合外力为零:根据牛顿第二定律,合外力与动量 p {displaystyle mathbf {p} } 的关系式为所以,动量是一个常数,是一个守恒量。根据角动量守恒定律,假若一个粒子所感受到的外力矩,其其总矢量和为零,则这粒子的角动量保持不变,是一个守恒量。在这状况下,粒子会呈匀角运动或直线运动。以方程表达,假设粒子感受到的合外力矩 τ {displaystyle {boldsymbol {tau }}} 为零:合外力矩与角动量 ℓ {displaystyle {boldsymbol {ell }}} 的关系式为所以,角动量是一个常数,是一个守恒量。在经典力学里,粒子的能量定义为动能与势能的代数和。根据能量守恒定律,假若一个粒子所感受到的外力都是保守力,则这粒子的能量保持不变,是一个守恒量。以方程表达,能量 E {displaystyle E} 为动能 T {displaystyle T} 与势能 V {displaystyle V} 的代数和粒子的动能与运动速度 v {displaystyle mathbf {v} } 的关系为其中, m {displaystyle m} 是粒子的质量。而对于保守系统,势能与净保守力 F {displaystyle mathbf {F} } 的关系为能量对于时间的导数为所以,能量是一个常数,是一个守恒量。思考一个物理系统,其拉格朗日量是动能 T {displaystyle T} 与势能 V {displaystyle V} 的差值:通常,动能的参数为广义速度 q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N {displaystyle {dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N}} (符号上方的点号表示对于时间 t {displaystyle t} 的全导数),而势能的参数为广义坐标 q 1 , q 2 , q 3 , … , q N ; t {displaystyle q_{1},q_{2},q_{3},dots ,q_{N};t} ,所以,拉格朗日量的参数为 q 1 , q 2 , q 3 , … , q N ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N ; t {displaystyle q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N};t} 。这物理系统的运动轨道,以拉格朗日方程表示为其中, t {displaystyle t} 是时间。拉格朗日量对于时间的全导数为将拉格朗日方程代入,可以得到定义“能量函数” h ( q 1 , q 2 , q 3 , … ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … ; t ) {displaystyle {mathit {h}}(q_{1},q_{2},q_{3},dots ;{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ;t)} 为则能量函数与拉格朗日量的关系为假若拉格朗日量显性地与时间无关, ∂ L ∂ t = 0 {displaystyle {frac {partial {mathcal {L}}}{partial t}}=0} , L = L ( q 1 , q 2 , q 3 , … , q N ; q ˙ 1 , q ˙ 2 , q ˙ 3 , … , q ˙ N ) {displaystyle {mathcal {L}}={mathcal {L}}(q_{1},q_{2},q_{3},dots ,q_{N};{dot {q}}_{1},{dot {q}}_{2},{dot {q}}_{3},dots ,{dot {q}}_{N})} ,则能量函数是一个常数,是一个守恒量。设定 h = E {displaystyle {mathit {h}}=E} ,这常数 E {displaystyle E} 可以称为这物理系统的能量。因此,这物理系统的能量守恒。

相关

  • 季节性流感疫苗季节性流感疫苗,常简称流感疫苗,是针对流行性感冒的疫苗。 因为流感病毒变化的速度很快,一年会发展新的流感疫苗两次。大部分状况下,疫苗有中度到高度的保护力;然而每年情况略有
  • 对称性数学上,若对所有的 a 和 b 属于 X,下述语句保持有效,则集合 X 上的二元关系 R 是对称的:“若 a 关系到 b,则 b 关系到 a。”数学上表示为:例如:“和……结婚”是对称关系;“小于”不
  • 抗原呈递细胞抗原呈递细胞(antigen-presenting cell、APC)也称为抗原提呈细胞、辅佐细胞或抗原呈现细胞,是指在免疫应答过程中,能将抗原物质提呈给T细胞的一类辅佐细胞。APC是一群异质性细胞
  • 磺胺恶唑磺胺恶唑是一种磺胺类药物,其INN名称是“Sulfamoxole”。该药物可用于治疗由细菌感染引发的疾病等病症。该药物在血液中的半衰期尚不明确,在大鼠体内的LD50(半致死量)为大于1250
  • 骨盆腔炎骨盆腔发炎(Pelvic inflammatory disease,PID)也称为盆腔炎,指的是女性子宫或输卵管受到感染的情形,有些定义也包含卵巢感染。骨盆腔发炎时常无明显的症状可能病征有下腹痛、阴道
  • 剑桥大学剑桥大学(英语:University of Cambridge;勋衔:Cantab)为一所座落于英国剑桥郡剑桥市的研究型大学。它是英语世界中历史第二悠久的大学,也是世界现存第四古老的大学。剑桥大学的起
  • 西里尔字母U+0400至U+04FF U+0500至U+052F(补充) U+2DE0至U+2DFF(扩展A) U+A640至U+A69F(扩展B)西里尔字母(俄语:Кирилли́ческий алфави́т或Кири́ллица,转写:Ki
  • CAM光合作用景天酸代谢(Crassulacean acid metabolism,简称 CAM)是部分植物的一种精巧的碳固定方法。代表性的植物有仙人掌、凤梨和长寿花等。要在干旱热带地区生存下来,CAM植物演化出一套
  • 茱莉娅·罗伯茨茱莉亚·费欧娜·罗伯茨(英语:Julia Fiona Roberts,1967年10月28日-),生于美国乔治亚州士麦那的女演员。2001年以《永不妥协》获得第73届奥斯卡金像奖最佳女主角奖。茱莉娅·罗伯
  • 共质体途径共质体途径(symplast pathway)是植物的根吸收水和无机盐的一种方式,与质体外途径相对。水及离子透过根毛细胞膜上的小通道进入植物体内,再透过细胞与细胞间的小孔道胞间连丝,经由