首页 >
整数
✍ dations ◷ 2025-11-15 18:06:07 #整数
N
⊆
Z
⊆
Q
⊆
R
⊆
C
{displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数
R
+
{displaystyle mathbb {R} ^{+}}
自然数
N
{displaystyle mathbb {N} }
正整数
Z
+
{displaystyle mathbb {Z} ^{+}}
小数
有限小数
无限小数
循环小数
有理数
Q
{displaystyle mathbb {Q} }
代数数
A
{displaystyle mathbb {A} }
实数
R
{displaystyle mathbb {R} }
复数
C
{displaystyle mathbb {C} }
高斯整数
Z
[
i
]
{displaystyle mathbb {Z} }负数
R
−
{displaystyle mathbb {R} ^{-}}
整数
Z
{displaystyle mathbb {Z} }
负整数
Z
−
{displaystyle mathbb {Z} ^{-}}
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
I
{displaystyle mathbb {I} }
二次无理数
艾森斯坦整数
Z
[
ω
]
{displaystyle mathbb {Z} }二元数
四元数
H
{displaystyle mathbb {H} }
八元数
O
{displaystyle mathbb {O} }
十六元数
S
{displaystyle mathbb {S} }
超实数
∗
R
{displaystyle ^{*}mathbb {R} }
大实数
上超实数双曲复数
双复数
复四元数
共四元数(英语:Dual quaternion)
超复数
超数
超现实数素数
P
{displaystyle mathbb {P} }
可计算数
基数
阿列夫数
同余
整数数列
公称值规矩数
可定义数
序数
超限数
'"`UNIQ--templatestyles-00000015-QINU`"'
p进数
数学常数圆周率
π
=
3.141592653
…
{displaystyle pi =3.141592653dots }
自然对数的底
e
=
2.718281828
…
{displaystyle e=2.718281828dots }
虚数单位
i
=
−
1
{displaystyle i={sqrt {-1}}}
无穷大
∞
{displaystyle infty }其他有限群
对称群, Sn
二面体群, Dn
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)G2 F4
E6 E7
E8
劳仑兹群庞加莱群环路群
量子群 O(∞) SU(∞) Sp(∞)整数,是序列
{
…
,
−
4
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
{displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }}
中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体
Z
{displaystyle Z}
或
Z
{displaystyle mathbb {Z} }
,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或
Z
+
{displaystyle mathbb {Z} ^{+}}
)即大于0的整数,是正数与整数的交集。而负整数(符号:
Z
−
{displaystyle Z^{-}}
或
Z
−
{displaystyle mathbb {Z} ^{-}}
)即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或
Z
0
+
{displaystyle mathbb {Z} _{0}^{+}}
),而将0与负整数统称为非正整数(符号:Z-0或
Z
0
−
{displaystyle mathbb {Z} _{0}^{-}}
)。在数论中自然数
N
{displaystyle mathbb {N} }
通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数
a
,
b
,
c
{displaystyle a,b,c}
的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z
{displaystyle mathbb {Z} }
是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是
Z
{displaystyle mathbb {Z} }
仅有的两个生成元。每个元素个数为无穷个的循环群都与
(
Z
,
+
)
{displaystyle (mathbb {Z} ,+)}
同构。Z
{displaystyle mathbb {Z} }
是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z
{displaystyle mathbb {Z} }
的基数(或势)是ℵ0,与
N
{displaystyle mathbb {N} }
相同。这可以从
Z
{displaystyle mathbb {Z} }
建立一双射函数到
N
{displaystyle mathbb {N} }
来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于
Z
{displaystyle mathbb {Z} }
,则证明
Z
{displaystyle mathbb {Z} }
与
N
{displaystyle mathbb {N} }
可建立一一对应的关系,即两集等势。
相关
- 地质学地质学(法语、德语:Geologie;英语:Geology;拉丁语、西班牙语:Geologia;源于希腊语 γῆ 和 λoγία)是对地球的起源探讨压力与时间、历史和结构进行研究的学科。主要研究地球的物
- 发育生物学发育生物学(英语:Developmental biology)是对于生物体生长和发育过程的研究。发育生物学研究基因对细胞生长,分化和形态发生(Morphogenesis)的调控,这些过程使生物体形成组织和器官
- 咽喉癌头颈癌(Head and Neck Cancers)是指位于头颈部位,除了脑癌以外的其他恶性肿瘤。较常见有口腔癌、鼻咽癌,另外还有口咽癌、下咽癌、喉癌、鼻窦癌、唾液腺癌以及甲状腺癌等。头颈
- 马耳他骑士团面积国家领袖耶路撒冷、罗得岛和马耳他圣约翰主权军事医院骑士团(意大利语:Sovrano Militare Ordine Ospedaliero di San Giovanni di Gerusalemme di Rodi e di Malta),简称马
- 阿玛斯号货轮油污事件阿玛斯号货轮油污事件是发生于2001年1月的公害事件,污染范围位于台湾垦丁国家公园境内的龙坑生态保护区。该事件为保护区的生态带来浩劫。2003年,环保署向挪威法院提出赔偿诉
- 乌尔大陆乌尔大陆(Ur)是个史前大陆,存在于30亿年前的太古代。其名称是以希腊神话中的乌拉诺斯(Uranus)为名。乌尔大陆可能是目前已知最早的大陆,年代比北极大陆早5亿年,但也可能晚于36到31
- 伊庇鲁斯同盟伊庇鲁斯同盟,又称伊庇鲁斯联邦 (西北希腊语: Κοινὸν Ἀπειρωτᾶν ),是一个古代希腊联邦式国家,前身一开始是摩罗西亚人的摩罗西亚同盟,在前330年左右纳入其他伊庇鲁
- 祭司祭司,依信仰或神职层级而有不同的称呼,如祭师、司铎等,是指在宗教活动或祭祀活动中,为了祭拜或崇敬所信仰的神,主持祭典,在祭坛上为共祭或主祭的神职人员。祭司在早期社会中已经出
- 排尿疼痛排尿疼痛、尿痛(英语:dysuria)是指在排尿过程中出现的疼痛现象,是与膀胱有关的症状(有时也作“下泌尿道症状”)。患者通常会形容排尿疼痛为“刺痛、灼烧、瘙痒”的感觉。该症状通
- 性虐待性虐待(英语:Sexual abuse)是针对非自愿的人士进行与性有关的虐待。与虐恋不同的是,虐恋是双方都同意的性行为,性虐待的受方则非自愿,即一方在对方未经同意的情况下对其进行性侵犯
