首页 >
整数
✍ dations ◷ 2025-11-30 20:56:08 #整数
N
⊆
Z
⊆
Q
⊆
R
⊆
C
{displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数
R
+
{displaystyle mathbb {R} ^{+}}
自然数
N
{displaystyle mathbb {N} }
正整数
Z
+
{displaystyle mathbb {Z} ^{+}}
小数
有限小数
无限小数
循环小数
有理数
Q
{displaystyle mathbb {Q} }
代数数
A
{displaystyle mathbb {A} }
实数
R
{displaystyle mathbb {R} }
复数
C
{displaystyle mathbb {C} }
高斯整数
Z
[
i
]
{displaystyle mathbb {Z} }负数
R
−
{displaystyle mathbb {R} ^{-}}
整数
Z
{displaystyle mathbb {Z} }
负整数
Z
−
{displaystyle mathbb {Z} ^{-}}
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
I
{displaystyle mathbb {I} }
二次无理数
艾森斯坦整数
Z
[
ω
]
{displaystyle mathbb {Z} }二元数
四元数
H
{displaystyle mathbb {H} }
八元数
O
{displaystyle mathbb {O} }
十六元数
S
{displaystyle mathbb {S} }
超实数
∗
R
{displaystyle ^{*}mathbb {R} }
大实数
上超实数双曲复数
双复数
复四元数
共四元数(英语:Dual quaternion)
超复数
超数
超现实数素数
P
{displaystyle mathbb {P} }
可计算数
基数
阿列夫数
同余
整数数列
公称值规矩数
可定义数
序数
超限数
'"`UNIQ--templatestyles-00000015-QINU`"'
p进数
数学常数圆周率
π
=
3.141592653
…
{displaystyle pi =3.141592653dots }
自然对数的底
e
=
2.718281828
…
{displaystyle e=2.718281828dots }
虚数单位
i
=
−
1
{displaystyle i={sqrt {-1}}}
无穷大
∞
{displaystyle infty }其他有限群
对称群, Sn
二面体群, Dn
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)G2 F4
E6 E7
E8
劳仑兹群庞加莱群环路群
量子群 O(∞) SU(∞) Sp(∞)整数,是序列
{
…
,
−
4
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
{displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }}
中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体
Z
{displaystyle Z}
或
Z
{displaystyle mathbb {Z} }
,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或
Z
+
{displaystyle mathbb {Z} ^{+}}
)即大于0的整数,是正数与整数的交集。而负整数(符号:
Z
−
{displaystyle Z^{-}}
或
Z
−
{displaystyle mathbb {Z} ^{-}}
)即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或
Z
0
+
{displaystyle mathbb {Z} _{0}^{+}}
),而将0与负整数统称为非正整数(符号:Z-0或
Z
0
−
{displaystyle mathbb {Z} _{0}^{-}}
)。在数论中自然数
N
{displaystyle mathbb {N} }
通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数
a
,
b
,
c
{displaystyle a,b,c}
的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z
{displaystyle mathbb {Z} }
是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是
Z
{displaystyle mathbb {Z} }
仅有的两个生成元。每个元素个数为无穷个的循环群都与
(
Z
,
+
)
{displaystyle (mathbb {Z} ,+)}
同构。Z
{displaystyle mathbb {Z} }
是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z
{displaystyle mathbb {Z} }
的基数(或势)是ℵ0,与
N
{displaystyle mathbb {N} }
相同。这可以从
Z
{displaystyle mathbb {Z} }
建立一双射函数到
N
{displaystyle mathbb {N} }
来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于
Z
{displaystyle mathbb {Z} }
,则证明
Z
{displaystyle mathbb {Z} }
与
N
{displaystyle mathbb {N} }
可建立一一对应的关系,即两集等势。
相关
- 淋巴管平滑肌增生淋巴管平滑肌增生(英文:Lymphangioleiomyomatosis,通称:LAM),或称淋巴管平滑肌瘤、肺淋巴管肌瘤,是一种罕见、进行性、系统性疾病,通常发展为囊肿导致的肺功能丧失。LAM主要影响女性
- 骨内给药骨内针(intraosseous vascular access)是利用骨骼给药的方式。在1922dc Drinker教授提出骨髓并不会塌陷,可以将之视为静脉用以注射药剂,因此开始有了骨内针intraaosseous vascul
- 环境雌激素环境雌激素(英语:Environmental estrogen,或称为仿雌激素、外源性雌激素 英语:Xenoestrogen),指进入人体后可产生具有模拟雌激素作用的环境毒素,会对生物有生殖方面的影响,使得幼体
- 重度抑郁重性抑郁疾患(英语:Major depressive disorder,缩写MDD),也可简称为抑郁症,是一种精神疾患,特征为超过两周的大多数时间都抑郁不已。常常伴随着没有精神、对一般休闲活动没有兴趣、
- 髋骨髋骨为人体腰部的骨骼,共左右两块。幼年时,髋骨分为髂骨、坐骨和耻骨以及软骨连接。成年后,它们之间的软骨会骨化,成为一个整体,即髋骨。左髋骨、右髋骨、骶骨、尾骨以及它们之间
- 妊娠剧吐妊娠剧吐(Hyperemesis gravidarum,HG)是妊娠并发症的一种。其特征为足以造成体重下降与脱水的严重恶心和呕吐。征象和症状包含一天内多次的剧吐还有晕眩感,其严重程度超越害喜。
- 笑气一氧化二氮或氧化亚氮(英语:Nitrous oxide),无色有甜味气体,又称笑气,是一种氧化剂,化学式N2O,在一定条件下能支持燃烧,但在室温下稳定,有轻微麻醉作用,其麻醉作用于1799年由英国化学家
- 西德尼·布伦纳西德尼·布伦纳,CH,FRS(英语:Sydney Brenner,1927年1月13日-2019年4月5日),南非生物学家,2002年诺贝尔生理学或医学奖获得者。布伦纳出生在南非小镇杰米斯顿。他的双亲是犹太移民(英语
- 迪奥科里斯佩达努思·迪奥斯科里德斯(古希腊语:Πεδάνιος Διοσκουρίδης;拉丁语:Pedanius Dioscorides),(约40年-90年)。古罗马时期的希腊医生与药理学家,曾被罗马军队聘为军
- 李维李维可以指:
