整数

✍ dations ◷ 2025-09-18 18:22:05 #整数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }其他有限群 对称群, Sn 二面体群, Dn 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z)G2 F4 E6 E7 E8 劳仑兹群庞加莱群环路群 量子群 O(∞) SU(∞) Sp(∞)整数,是序列 { … , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , … } {displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }} 中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体 Z {displaystyle Z} 或 Z {displaystyle mathbb {Z} } ,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或 Z + {displaystyle mathbb {Z} ^{+}} )即大于0的整数,是正数与整数的交集。而负整数(符号: Z − {displaystyle Z^{-}} 或 Z − {displaystyle mathbb {Z} ^{-}} )即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或 Z 0 + {displaystyle mathbb {Z} _{0}^{+}} ),而将0与负整数统称为非正整数(符号:Z-0或 Z 0 − {displaystyle mathbb {Z} _{0}^{-}} )。在数论中自然数 N {displaystyle mathbb {N} } 通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数 a , b , c {displaystyle a,b,c} 的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z {displaystyle mathbb {Z} } 是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是 Z {displaystyle mathbb {Z} } 仅有的两个生成元。每个元素个数为无穷个的循环群都与 ( Z , + ) {displaystyle (mathbb {Z} ,+)} 同构。Z {displaystyle mathbb {Z} } 是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z {displaystyle mathbb {Z} } 的基数(或势)是ℵ0,与 N {displaystyle mathbb {N} } 相同。这可以从 Z {displaystyle mathbb {Z} } 建立一双射函数到 N {displaystyle mathbb {N} } 来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于 Z {displaystyle mathbb {Z} } ,则证明 Z {displaystyle mathbb {Z} } 与 N {displaystyle mathbb {N} } 可建立一一对应的关系,即两集等势。

相关

  • 下背痛下背痛(英语:low back pain,LBP),也称腰痛,是常见背部肌肉骨骼伤病(英语:Musculoskeletal disorder),对许多民众生活构成影响。疼痛感可能为钝痛感,也有可能成刺痛。下背痛可按照时程分
  • 雌二醇雌二醇(Estradiol,E2)是卵巢分泌的类固醇激素。是主要的雌性激素,负责调节女性特征、附属性器官的成熟和月经-排卵周期,促进乳腺导管系统的产生。雌二醇等雌激素的血清浓度在月经
  • 巴统巴统 (格鲁吉亚语:ბათუმი,拉丁化:Batumi),为格鲁吉亚西南部的阿扎尔自治共和国首府,位于黑海之滨,为当地著名的旅游胜地。2002年人口121,806。巴统是格鲁吉亚重要的港口和商业
  • 波利比乌斯波利比乌斯(希腊语:Πολύϐιος,前200年-前118年)生于伯罗奔尼撒的梅格洛玻利斯,希腊化时代的政治家和历史学家,以《历史》一书留名传世,原书40卷,只有5卷传世,记叙地中海周边的
  • 文本和数据挖掘文本挖掘有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常
  • 记号记号(sign)是指一个用来代表其他事物的实体或物体。记号可以表示其他事物确定发生或是出现,也可能只是有一定的可能性。自然的记号是指记号和所代表的事物有因果的关系,例如脚印
  • 口诀陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 微格式微格式(Microformats),是建立在已有的、广泛使用的标准之上的一系列数据格式,其设计理念是人优先,机器次之。网页上的允许的微格式数据包括事件、人物、地点等,它可以被其他的软件
  • 情色描写历史情色描写(英语:erotic depictions)包括以绘画、雕塑、摄影、戏剧、音乐以及写作的手法描述人类的性相关的场面,这在历史上几乎所有文明都曾产生过,不分古今东西。在早期人类文化
  • 顶复器顶质体(英语:apicoplast)是大部分顶复门生物共有的非光合作用的细胞器,存在于多种顶复门生物中,包括引发疟疾的寄生虫——恶性疟原虫(Plasmodium falciparum)等,但在隐孢子虫属(英语:C