整数

✍ dations ◷ 2025-07-19 07:06:18 #整数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }其他有限群 对称群, Sn 二面体群, Dn 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z)G2 F4 E6 E7 E8 劳仑兹群庞加莱群环路群 量子群 O(∞) SU(∞) Sp(∞)整数,是序列 { … , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , … } {displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }} 中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体 Z {displaystyle Z} 或 Z {displaystyle mathbb {Z} } ,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或 Z + {displaystyle mathbb {Z} ^{+}} )即大于0的整数,是正数与整数的交集。而负整数(符号: Z − {displaystyle Z^{-}} 或 Z − {displaystyle mathbb {Z} ^{-}} )即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或 Z 0 + {displaystyle mathbb {Z} _{0}^{+}} ),而将0与负整数统称为非正整数(符号:Z-0或 Z 0 − {displaystyle mathbb {Z} _{0}^{-}} )。在数论中自然数 N {displaystyle mathbb {N} } 通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数 a , b , c {displaystyle a,b,c} 的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z {displaystyle mathbb {Z} } 是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是 Z {displaystyle mathbb {Z} } 仅有的两个生成元。每个元素个数为无穷个的循环群都与 ( Z , + ) {displaystyle (mathbb {Z} ,+)} 同构。Z {displaystyle mathbb {Z} } 是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z {displaystyle mathbb {Z} } 的基数(或势)是ℵ0,与 N {displaystyle mathbb {N} } 相同。这可以从 Z {displaystyle mathbb {Z} } 建立一双射函数到 N {displaystyle mathbb {N} } 来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于 Z {displaystyle mathbb {Z} } ,则证明 Z {displaystyle mathbb {Z} } 与 N {displaystyle mathbb {N} } 可建立一一对应的关系,即两集等势。

相关

  • 甲型肝炎甲型肝炎疫苗是用于预防甲型肝炎的疫苗。 对95%的人都会有效,且能持续至少15年以上的效期,很多人甚至能持续一生。幼儿应接种 2 剂,于出生满 12-15 个月接种第 1 剂,间隔 6 个月
  • 咽头人类的咽(pharynx),又称咽头,是颈部的一个部分,为一条连接口腔和鼻腔至食道和气管(食道和气管交界)的圆锥形通道,是消化道和呼吸道的交会处。咽头与喉头在解剖学上合称为咽喉。人类
  • 埃里克·迈耶埃里克·迈耶(英语:Eric A. Meyer)是美国网页设计顾问和作家。他以代表网页标准的倡导工作而闻名,最著名的是层叠样式表(CSS),这是一种管理HTML如何显示的技术。迈耶已经撰写了一些
  • 细菌型肺炎细菌性肺炎是一种细菌感染引起的肺炎类型。肺炎链球菌 (J13 )是在所有年龄组除了新生婴儿最常见的细菌 引起的肺炎。 肺炎链球菌是一个革兰氏阳性细菌也经常存在于没有肺炎
  • 水泡状胎块葡萄胎也称水泡状胎、水泡状胎块(Hydatidiform Mole) 是一种异常的人类妊娠,系由着床但未成功发育的受精卵所造成。因其特征为胎盘绒毛间质水肿,形成透明或半透明的薄壁水泡,形似
  • 最长寿者这是已确认世上最长寿者排名的表格,如最长寿者和最长寿男性。表中的长寿者的年龄须经由研究长寿的国际性组织(如吉尼斯世界纪录大全或老年医学研究组织(英语:Gerontology Resear
  • 鬼谷子鬼谷子(?-?),传说原名王诩,又作王禅、王利、王通,一说字诩,道号玄微子,世称鬼谷先生、王禅老祖,是大约活跃于战国中期的显赫人物,为“诸子百家”之一、纵横家的鼻祖,亦有政治家、外交家、
  • 奇里乞亚亚美尼亚王国奇里乞亚亚美尼亚王国(古亚美尼亚语:Կիլիկիոյ Հայկական Թագաւորութիւն, 转写:Kilikio Haykakan T'agavorout'ioun),是由中世纪中期塞尔柱人入侵亚
  • Tsub3/sub三碘甲状腺原氨酸(T3)是一种甲状腺激素,几乎对所有生理过程都产生影响,包括生长和发育(英语:Human development (biology)),代谢,体温,和心率。与甲状腺素(四碘甲腺原氨酸)类似,但生理作
  • 意外发现意外发现(Serendipity)是指某人发现了他原先没有期待发现的事物或现象。英文原词是“Serendipity”,这个英文单词曾在2004年6月被一家英国翻译公司评选为十大最难翻译的单词 ,不