首页 >
整数
✍ dations ◷ 2025-04-26 12:43:49 #整数
N
⊆
Z
⊆
Q
⊆
R
⊆
C
{displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数
R
+
{displaystyle mathbb {R} ^{+}}
自然数
N
{displaystyle mathbb {N} }
正整数
Z
+
{displaystyle mathbb {Z} ^{+}}
小数
有限小数
无限小数
循环小数
有理数
Q
{displaystyle mathbb {Q} }
代数数
A
{displaystyle mathbb {A} }
实数
R
{displaystyle mathbb {R} }
复数
C
{displaystyle mathbb {C} }
高斯整数
Z
[
i
]
{displaystyle mathbb {Z} }负数
R
−
{displaystyle mathbb {R} ^{-}}
整数
Z
{displaystyle mathbb {Z} }
负整数
Z
−
{displaystyle mathbb {Z} ^{-}}
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
I
{displaystyle mathbb {I} }
二次无理数
艾森斯坦整数
Z
[
ω
]
{displaystyle mathbb {Z} }二元数
四元数
H
{displaystyle mathbb {H} }
八元数
O
{displaystyle mathbb {O} }
十六元数
S
{displaystyle mathbb {S} }
超实数
∗
R
{displaystyle ^{*}mathbb {R} }
大实数
上超实数双曲复数
双复数
复四元数
共四元数(英语:Dual quaternion)
超复数
超数
超现实数素数
P
{displaystyle mathbb {P} }
可计算数
基数
阿列夫数
同余
整数数列
公称值规矩数
可定义数
序数
超限数
'"`UNIQ--templatestyles-00000015-QINU`"'
p进数
数学常数圆周率
π
=
3.141592653
…
{displaystyle pi =3.141592653dots }
自然对数的底
e
=
2.718281828
…
{displaystyle e=2.718281828dots }
虚数单位
i
=
−
1
{displaystyle i={sqrt {-1}}}
无穷大
∞
{displaystyle infty }其他有限群
对称群, Sn
二面体群, Dn
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)G2 F4
E6 E7
E8
劳仑兹群庞加莱群环路群
量子群 O(∞) SU(∞) Sp(∞)整数,是序列
{
…
,
−
4
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
{displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }}
中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体
Z
{displaystyle Z}
或
Z
{displaystyle mathbb {Z} }
,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或
Z
+
{displaystyle mathbb {Z} ^{+}}
)即大于0的整数,是正数与整数的交集。而负整数(符号:
Z
−
{displaystyle Z^{-}}
或
Z
−
{displaystyle mathbb {Z} ^{-}}
)即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或
Z
0
+
{displaystyle mathbb {Z} _{0}^{+}}
),而将0与负整数统称为非正整数(符号:Z-0或
Z
0
−
{displaystyle mathbb {Z} _{0}^{-}}
)。在数论中自然数
N
{displaystyle mathbb {N} }
通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数
a
,
b
,
c
{displaystyle a,b,c}
的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z
{displaystyle mathbb {Z} }
是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是
Z
{displaystyle mathbb {Z} }
仅有的两个生成元。每个元素个数为无穷个的循环群都与
(
Z
,
+
)
{displaystyle (mathbb {Z} ,+)}
同构。Z
{displaystyle mathbb {Z} }
是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z
{displaystyle mathbb {Z} }
的基数(或势)是ℵ0,与
N
{displaystyle mathbb {N} }
相同。这可以从
Z
{displaystyle mathbb {Z} }
建立一双射函数到
N
{displaystyle mathbb {N} }
来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于
Z
{displaystyle mathbb {Z} }
,则证明
Z
{displaystyle mathbb {Z} }
与
N
{displaystyle mathbb {N} }
可建立一一对应的关系,即两集等势。
相关
- 螺旋动物螺旋动物(学名:Spiralia),又称螺旋卵裂动物,是原口动物的一大分支,包括多种型态的动物门类,如软体动物、环节动物门、扁形动物门等。其动物在发育的早期过程中以经典的“螺旋式”卵
- 042–079医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药
- 岛屿地区岛屿地区(Insular area)特指那些其不属于美国五十州以及联邦特区的美国领土。因为这些有人居住的岛屿地区,是非合并建制领土,所以这些地区本土出生的居民不被美国宪法承认为美国
- 国际电信联盟国际电信联盟(法语:Union Internationale des Télécommunications,简称 UIT; 英语:International Telecommunication Union,简称 ITU)是一个国际组织,主要负责确立国际无线电和电
- 联合国新闻部联合国新闻部(英语:United Nations Department of Global Communications)是联合国秘书处的一个部门。它的任务是通过战略宣传运动、媒体和与民间社会团体的关系,提高公众对联合
- 西墙西墙,又名哭墙(希伯来语:הַכֹּתֶל הַמַּעֲרָבִי,HaKotel HaMa'aravi),阿拉伯人称之为布拉克墙(阿拉伯语:حائط البراق,Ḥā'iṭ Al-Burāq)位于耶路
- 有机磷中毒磷酸酯中毒或有机磷中毒(英语:Organophosphate poisoning),指由磷酸酯(英文简称为 OP)所导致的中毒。磷酸酯可用于杀虫剂、药物及神经性毒剂。中毒症状有唾液及泪液分泌增加、腹泻
- 非金属元素非金属元素是元素的一大类,在所有的118种化学元素中,非金属占了23种。在周期表中,除氢以外,其它非金属元素都排在表的右侧和上侧。包括氢、硼、碳、氮、氧、氟、硅、磷、硫、氯
- 费城艺术博物馆费城艺术博物馆(英语:Philadelphia Museum of Art)是美国最大的美术馆之一,位于费城本杰明·富兰克林公园大道的西端。该博物馆成立于1876年,以配合同年举行的美国首届世界博览会
- β-羟-β-甲戊二酸单酰辅酶A(6-amino-9H-purin-9-yl)-4-hydroxy- 3-(phosphonooxy)tetrahydrofuran-2-yl]- 3,5,9,21-tetrahydroxy-8,8,21-trimethyl- 10,14,19-trioxo-2,4,6-trioxa-18-thia- 11,15-di