整数

✍ dations ◷ 2025-11-25 18:57:21 #整数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }其他有限群 对称群, Sn 二面体群, Dn 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z)G2 F4 E6 E7 E8 劳仑兹群庞加莱群环路群 量子群 O(∞) SU(∞) Sp(∞)整数,是序列 { … , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , … } {displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }} 中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体 Z {displaystyle Z} 或 Z {displaystyle mathbb {Z} } ,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或 Z + {displaystyle mathbb {Z} ^{+}} )即大于0的整数,是正数与整数的交集。而负整数(符号: Z − {displaystyle Z^{-}} 或 Z − {displaystyle mathbb {Z} ^{-}} )即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或 Z 0 + {displaystyle mathbb {Z} _{0}^{+}} ),而将0与负整数统称为非正整数(符号:Z-0或 Z 0 − {displaystyle mathbb {Z} _{0}^{-}} )。在数论中自然数 N {displaystyle mathbb {N} } 通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数 a , b , c {displaystyle a,b,c} 的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z {displaystyle mathbb {Z} } 是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是 Z {displaystyle mathbb {Z} } 仅有的两个生成元。每个元素个数为无穷个的循环群都与 ( Z , + ) {displaystyle (mathbb {Z} ,+)} 同构。Z {displaystyle mathbb {Z} } 是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z {displaystyle mathbb {Z} } 的基数(或势)是ℵ0,与 N {displaystyle mathbb {N} } 相同。这可以从 Z {displaystyle mathbb {Z} } 建立一双射函数到 N {displaystyle mathbb {N} } 来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于 Z {displaystyle mathbb {Z} } ,则证明 Z {displaystyle mathbb {Z} } 与 N {displaystyle mathbb {N} } 可建立一一对应的关系,即两集等势。

相关

  • 病毒概论一:双链DNA病毒 二:单链DNA病毒 三:双链RNA病毒 四:正义单链RNA病毒 五:反义单链RNA病毒 六:逆转录病毒 七:DNA逆转录病毒一个位于宿主细胞之外的独立、功能完全的病毒颗粒一些病毒
  • 瘟病毒边界病病毒 牛病毒性腹泻病毒1 牛病毒性腹泻病毒2 古典猪瘟病毒瘟疫病毒属(Pestivirus)是黄病毒科的一个属。瘟疫病毒属的病毒主要感染哺乳动物,包括牛科和猪科的动物。瘟疫病
  • 加夫里洛·普林西普加夫里洛·普林西波(塞尔维亚语:Гаврило Принцип;拉丁化:Gavrilo Princip,1894年7月25日-1918年4月28日),波斯尼亚人,塞尔维亚民族主义者。经过两个月的预谋,1914年6月2
  • 艾滋病本列表根据美国中央情报局所出版之《世界概况》,列出世界各国家与地区中,成年人感染人类免疫缺乏病毒(HIV)的人口数量。表格数据都来源于《世界概况》。标注星号*意味世界概况无
  • 清蛋白结构 / ECOD白蛋白(英语:Albumin)又称清蛋白,旧称胉,是属于球状蛋白的一种蛋白质,但并不是球蛋白。在人体内它最重要的作用是维持胶体渗透压。在奶和蛋里也有白蛋白。人体内白蛋白
  • 大使馆外交代表机构,通常称为领使馆、使领馆等,是一个国家驻外外交人员居住与工作的地方,可分为大使馆、公使馆、高级专员公署(西班牙语:Alto Comisionado)等种类。外交代表机构通常设在
  • 生态系统理论生态系统理论(Ecological Systems Theory),有时也被称作背景发展理论或者人际生态理论,将人际关系分成了四套依次层叠的环境系统。这些系统彼此之间又相互影响。该理论由尤里·
  • 仡佬字陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 奥斯陆奥斯陆(挪威语:Oslo  聆听 帮助·信息),1925年前旧称克里斯蒂安尼亚(Kristiania),是挪威首都和最大城市,全国政治、经济、文化中心,也是挪威的贸易、银行业、工业和航运枢纽,位于挪威
  • 抗真菌药物杀真菌剂(英语:fungicide)是指用来杀死或抑制真菌或真菌袍子的化合物或者生物体。真菌能够对农业产生严重的危害,例如严重减产,质量降低等。卵菌不是真菌,尽管它和真菌很相似,例如