整数

✍ dations ◷ 2025-04-26 12:43:49 #整数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }其他有限群 对称群, Sn 二面体群, Dn 无限群 整数, Z 模群, PSL(2,Z) 和 SL(2,Z)G2 F4 E6 E7 E8 劳仑兹群庞加莱群环路群 量子群 O(∞) SU(∞) Sp(∞)整数,是序列 { … , − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 , 3 , … } {displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }} 中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体 Z {displaystyle Z} 或 Z {displaystyle mathbb {Z} } ,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或 Z + {displaystyle mathbb {Z} ^{+}} )即大于0的整数,是正数与整数的交集。而负整数(符号: Z − {displaystyle Z^{-}} 或 Z − {displaystyle mathbb {Z} ^{-}} )即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或 Z 0 + {displaystyle mathbb {Z} _{0}^{+}} ),而将0与负整数统称为非正整数(符号:Z-0或 Z 0 − {displaystyle mathbb {Z} _{0}^{-}} )。在数论中自然数 N {displaystyle mathbb {N} } 通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数 a , b , c {displaystyle a,b,c} 的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z {displaystyle mathbb {Z} } 是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是 Z {displaystyle mathbb {Z} } 仅有的两个生成元。每个元素个数为无穷个的循环群都与 ( Z , + ) {displaystyle (mathbb {Z} ,+)} 同构。Z {displaystyle mathbb {Z} } 是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z {displaystyle mathbb {Z} } 的基数(或势)是ℵ0,与 N {displaystyle mathbb {N} } 相同。这可以从 Z {displaystyle mathbb {Z} } 建立一双射函数到 N {displaystyle mathbb {N} } 来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于 Z {displaystyle mathbb {Z} } ,则证明 Z {displaystyle mathbb {Z} } 与 N {displaystyle mathbb {N} } 可建立一一对应的关系,即两集等势。

相关

  • 螺旋动物螺旋动物(学名:Spiralia),又称螺旋卵裂动物,是原口动物的一大分支,包括多种型态的动物门类,如软体动物、环节动物门、扁形动物门等。其动物在发育的早期过程中以经典的“螺旋式”卵
  • 042–079医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药
  • 岛屿地区岛屿地区(Insular area)特指那些其不属于美国五十州以及联邦特区的美国领土。因为这些有人居住的岛屿地区,是非合并建制领土,所以这些地区本土出生的居民不被美国宪法承认为美国
  • 国际电信联盟国际电信联盟(法语:Union Internationale des Télécommunications,简称 UIT; 英语:International Telecommunication Union,简称 ITU)是一个国际组织,主要负责确立国际无线电和电
  • 联合国新闻部联合国新闻部(英语:United Nations Department of Global Communications)是联合国秘书处的一个部门。它的任务是通过战略宣传运动、媒体和与民间社会团体的关系,提高公众对联合
  • 西墙西墙,又名哭墙(希伯来语:הַכֹּתֶל הַמַּעֲרָבִי‎,HaKotel HaMa'aravi),阿拉伯人称之为布拉克墙(阿拉伯语:حائط البراق‎,Ḥā'iṭ Al-Burāq)位于耶路
  • 有机磷中毒磷酸酯中毒或有机磷中毒(英语:Organophosphate poisoning),指由磷酸酯(英文简称为 OP)所导致的中毒。磷酸酯可用于杀虫剂、药物及神经性毒剂。中毒症状有唾液及泪液分泌增加、腹泻
  • 非金属元素非金属元素是元素的一大类,在所有的118种化学元素中,非金属占了23种。在周期表中,除氢以外,其它非金属元素都排在表的右侧和上侧。包括氢、硼、碳、氮、氧、氟、硅、磷、硫、氯
  • 费城艺术博物馆费城艺术博物馆(英语:Philadelphia Museum of Art)是美国最大的美术馆之一,位于费城本杰明·富兰克林公园大道的西端。该博物馆成立于1876年,以配合同年举行的美国首届世界博览会
  • β-羟-β-甲戊二酸单酰辅酶A(6-amino-9H-purin-9-yl)-4-hydroxy- 3-(phosphonooxy)tetrahydrofuran-2-yl]- 3,5,9,21-tetrahydroxy-8,8,21-trimethyl- 10,14,19-trioxo-2,4,6-trioxa-18-thia- 11,15-di