首页 >
整数
✍ dations ◷ 2025-11-29 20:45:08 #整数
N
⊆
Z
⊆
Q
⊆
R
⊆
C
{displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数
R
+
{displaystyle mathbb {R} ^{+}}
自然数
N
{displaystyle mathbb {N} }
正整数
Z
+
{displaystyle mathbb {Z} ^{+}}
小数
有限小数
无限小数
循环小数
有理数
Q
{displaystyle mathbb {Q} }
代数数
A
{displaystyle mathbb {A} }
实数
R
{displaystyle mathbb {R} }
复数
C
{displaystyle mathbb {C} }
高斯整数
Z
[
i
]
{displaystyle mathbb {Z} }负数
R
−
{displaystyle mathbb {R} ^{-}}
整数
Z
{displaystyle mathbb {Z} }
负整数
Z
−
{displaystyle mathbb {Z} ^{-}}
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
I
{displaystyle mathbb {I} }
二次无理数
艾森斯坦整数
Z
[
ω
]
{displaystyle mathbb {Z} }二元数
四元数
H
{displaystyle mathbb {H} }
八元数
O
{displaystyle mathbb {O} }
十六元数
S
{displaystyle mathbb {S} }
超实数
∗
R
{displaystyle ^{*}mathbb {R} }
大实数
上超实数双曲复数
双复数
复四元数
共四元数(英语:Dual quaternion)
超复数
超数
超现实数素数
P
{displaystyle mathbb {P} }
可计算数
基数
阿列夫数
同余
整数数列
公称值规矩数
可定义数
序数
超限数
'"`UNIQ--templatestyles-00000015-QINU`"'
p进数
数学常数圆周率
π
=
3.141592653
…
{displaystyle pi =3.141592653dots }
自然对数的底
e
=
2.718281828
…
{displaystyle e=2.718281828dots }
虚数单位
i
=
−
1
{displaystyle i={sqrt {-1}}}
无穷大
∞
{displaystyle infty }其他有限群
对称群, Sn
二面体群, Dn
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)G2 F4
E6 E7
E8
劳仑兹群庞加莱群环路群
量子群 O(∞) SU(∞) Sp(∞)整数,是序列
{
…
,
−
4
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
…
}
{displaystyle {ldots ,-4,-3,-2,-1,0,1,2,3,ldots }}
中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体
Z
{displaystyle Z}
或
Z
{displaystyle mathbb {Z} }
,源于德语单词Zahlen(意为“数”)的首字母。在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。整数是一个集合,通常可以分为正整数、零(0)和负整数。正整数(符号:Z+或
Z
+
{displaystyle mathbb {Z} ^{+}}
)即大于0的整数,是正数与整数的交集。而负整数(符号:
Z
−
{displaystyle Z^{-}}
或
Z
−
{displaystyle mathbb {Z} ^{-}}
)即小于0的整数,是负数与整数的交集。和整数一样,两者都是可数的无限集合。除正整数和负整数外,通常将0与正整数统称为非负整数(符号:Z+0或
Z
0
+
{displaystyle mathbb {Z} _{0}^{+}}
),而将0与负整数统称为非正整数(符号:Z-0或
Z
0
−
{displaystyle mathbb {Z} _{0}^{-}}
)。在数论中自然数
N
{displaystyle mathbb {N} }
通常被视为与正整数等同,即1,2,3等,但在集合论和计算机科学中自然数则通常是指非负整数,即0,1,2等。下表给出任何整数
a
,
b
,
c
{displaystyle a,b,c}
的加法和乘法的基本性质。全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。Z
{displaystyle mathbb {Z} }
是一个加法循环群,因为任何整数都是若干个1或-1的和。1和-1是
Z
{displaystyle mathbb {Z} }
仅有的两个生成元。每个元素个数为无穷个的循环群都与
(
Z
,
+
)
{displaystyle (mathbb {Z} ,+)}
同构。Z
{displaystyle mathbb {Z} }
是一个全序集,没有上界和下界,其序列如下:一个整数大于零则为正,小于零则为负。零既非正也非负。整数的序列在代数运算下是可以比较的,表示如下:整数环是一个欧几里德域。Z
{displaystyle mathbb {Z} }
的基数(或势)是ℵ0,与
N
{displaystyle mathbb {N} }
相同。这可以从
Z
{displaystyle mathbb {Z} }
建立一双射函数到
N
{displaystyle mathbb {N} }
来证明,亦即该函数要同时满足单射及满射的条件,例如:当该函数的定义域仅限于
Z
{displaystyle mathbb {Z} }
,则证明
Z
{displaystyle mathbb {Z} }
与
N
{displaystyle mathbb {N} }
可建立一一对应的关系,即两集等势。
相关
- 大环内酯大环内酯(macrolides),或称大环内酯,是一组其作用在于结构内的“大环”的药物(一般都是抗生素),这个大环亦即是一连结一个或多个脱氧糖(多是红霉糖(英语:cladinose)及去氧糖胺(英语:desos
- 词库词库(英语:lexicon)是指一个人、一门语言或一门专业知识(如导航、医学等)所用到的词汇。 在语言学中,词库的概念专指该语言词位的清单。语言学的有关理论认为,人类的语言由两部分组
- 奥美拉唑奥美拉唑(Omeprazole),常见商品名Prilosec等。是一种可用于治疗 胃食道逆流、胃及十二指肠溃疡和胃泌素瘤(英语:Zollinger–Ellison syndrome)的口服药物。它同时也用于上消化道出
- 成员联合国安全理事会成员包括五个常任理事国和十个非常任理事国。安全理事会的常任理事国名额为五个,自1945年联合国成立以来一直未变;其中,中国的代表权在1971年时,通过联合国大会
- 曲马多曲马多,英文名:Tramadol(INN),是一种阿片类药物 ,主要用作镇痛药,可缓解普通到严重的疼痛。该药是人工合成的,作用于μ-阿片类受体以及去甲肾上腺素和血清张力素系统。 曲马多是于20
- 法尤姆省法尤姆省(阿拉伯语:محافظة الفيوم),是埃及的一个省,位于该国中部。首府法尤姆。面积1,827平方公里,人口2,512,792人(2006年统计)。
- 卢·蒙特利卢·蒙特利(英语:Louis J. Montulli II)是一位以开发网页浏览器而闻名的程序员。在1991年和1992年,他与堪萨斯大学的迈克尔·格罗贝兹和查尔斯·雷扎克合作开发了一个名为Lynx的
- 全色盲色盲(英语:Color blindness),又称色觉辨认障碍(英语:Color vision deficiency),是指看见颜色及辨别颜色的能力减退的状况。色盲有可能造成学习困难 ,购买水果、挑选衣物,及辨识交通号
- 克罗恩病克隆氏症(Crohn's disease),又称克罗恩病、克隆氏症候群或局部性肠炎,是一种发炎性肠道疾病,可能影响肠胃道从口腔至肛门的任何部分。症状通常包含:腹痛、腹泻(如果发炎严重可能会
- S期S期是细胞周期中进行DNA复制的时期,发生于G1期后,G2期前。细致而准确的DNA复制对于避免可能导致细胞死亡或疾病的遗传变异是必要的,因此真核生物中调控DNA复制的过程高度保守。
