康普顿波长

✍ dations ◷ 2025-10-22 12:07:16 #原子物理学,基础量子物理学

粒子的康普顿波长(Compton wavelength)λ,其关系式如下:

式中的变数符号

定义约化康普顿波长 λ ¯ {\displaystyle {\bar {\lambda }}}

根据CODATA 2014的数值,电子的康普顿波长是2.4263102367(11)×10-12 m。

不同的粒子,有不同的康普顿波长.

在考虑到量子力学与狭义相对论为前提下,康普顿波长被认为是测量粒子位置的基本限制。

其大小取决于该粒子的质量 m   {\displaystyle m\ } 。现举一例子说明这个,设用反射回来的光去量度粒子的位置──但要准确地量度位置需要波长短的光。波长短的光是由高能量光子所组成的。若这些光子的能量超过 m c 2   {\displaystyle mc^{2}\ } ,当击中被量度位置的粒子时,其撞击所产生的能量可能会足够产生同类型的粒子。这使得粒子的原位置这个问题变得毫无意义。

此论点同时亦表明了康普顿波长是量子场论──可用于描述粒子的生成或湮灭──需要被重视的长度上限。

我们可以用以下方法将上述论点变得更精确一点。设要量度粒子的位置至一准确度△x。 则其位置及动量的不确定性关系式为

Δ x Δ p / 2 {\displaystyle \Delta x\,\Delta p\geq \hbar /2}

所以粒子动量的不确定性符合:

Δ p 2 Δ x {\displaystyle \Delta p\geq {\frac {\hbar }{2\Delta x}}}

使用相对性原理中的动量与能量,当 Δ p {\displaystyle \Delta p} 大于 m c {\displaystyle mc} 时能量的不确定性比 m c 2   {\displaystyle mc^{2}\ } 要大,会有足够的能量生成出一个同类型的粒子。所以运用一点代数,可见存在一基础上限

Δ x 2 m c {\displaystyle \Delta x\geq {\frac {\hbar }{2mc}}}

所以至少在大约一倍大小以内,粒子位置的不确定性一定要比康普顿波长 h / m c   {\displaystyle h/mc\ } 为大。

康普顿波长能够与德布罗意波长作对比;后者大小视粒子的动量而定,它同时也决定量子力学中粒子的粒性及波性的分界线。

对费米子而言,其康普顿波长决定了相互作用的反应截面积。例如,对一从电子来的光子而言,其汤姆孙散射反应截面积等于

( 8 π / 3 ) α 2 λ e 2 {\displaystyle (8\pi /3)\alpha ^{2}\lambda _{e}^{2}} ,

其中 α   {\displaystyle \alpha \ } 为精细结构常数, λ e   {\displaystyle \lambda _{e}\ } 为电子的康普顿波长。而规范场玻色子而言,其康普顿波长决定了汤川相互作用的有效范围:由于光子无质量,电磁的作用距离为无限。

电子的康普顿波长一组三个互相关连的长度单位中的一个,另外两个是玻尔半径 a 0 {\displaystyle a_{0}} 及经典电子半径 r e {\displaystyle r_{e}} 。康普顿波长是由电子质量 m e {\displaystyle m_{e}} ,普朗克常数 h {\displaystyle h} 及光速 c {\displaystyle c} 构建的。而玻尔半径则是由 m e {\displaystyle m_{e}} h {\displaystyle h} 及电子电荷 e {\displaystyle e} 所构建。经典电子半径就由 m e {\displaystyle m_{e}} , c {\displaystyle c} e {\displaystyle e} 构建。这三种长度中的任何一种都能够被写成另外两种长度及精细结构常数的倍数 α {\displaystyle \alpha } :

r e = α λ e 2 π = α 2 a 0 {\displaystyle r_{e}={\alpha \lambda _{e} \over 2\pi }=\alpha ^{2}a_{0}}

普朗克质量的特殊在于它跟 2 π {\displaystyle 2\pi } 及这类因数没有关系,这个质量的康普顿波长相等于其史瓦西半径。由此而得的特殊长度被称为普朗克长度。从简易的量纲分析可得:史瓦西半径与质量成正比,而康普顿波长与质量成反比。

相关

  • 夫西地酸夫西地酸(英语:Fusidic acid)是一种甾类抗生素,通常局部用于面霜和眼药水,也可作为片剂或注射剂全身使用。在全球范围内,细菌抗生素抗药性的提高引起了人们对其使用的新兴趣。多可
  • 睾丸癌睾丸癌(英语:Testicular cancer)是一种发展于男性生殖系统之一睾丸上的癌症。在美国,每年约8,000至9,000人被诊断出患有睾丸癌。男人一生中得到睾丸癌的几率大约为0.4%。睾丸癌
  • 听障听觉障碍(英语:Hearing loss)又称听力缺损,指听觉部分或完全丧失,而耳聋人士则是指完全没有或几乎没有听力者。听力缺损可能发生在单耳或双耳,有可能是暂时或永久性质。孩童的听力
  • 晚餐晚餐是指在黄昏或夜晚时吃的餐。晚餐是最常与宴会、娱乐或亲友聚会结合的餐。西式晚餐常附以饭后甜品或水果。吃时,有时会喝酒。晚餐如果吃得过量,引致肥胖的机会最大,因为晚饭
  • 希腊人列表希腊人按职业分类,可以从以下各列表中查询。
  • 法国文化部政治主题文化部(法语:Ministère de la Culture)是法国政府部门,其成员专门负责管理国家博物馆和历史遗迹,无论在法国或海外都推广和保护各种视觉、造型、戏剧、音乐、舞蹈、建筑
  • 能带理论在固体物理学中,固体的能带结构 (又称电子能带结构)描述了禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。材料的能带结构决定了多种特性,特别是它
  • 妙闻妙闻(梵语:सुश्रुत,音译为苏胥如塔、苏士鲁塔)仙人,生活于约前7世纪到前6世纪的古印度外科医生,阿育吠陀学者,《妙闻本集(印地语:सुश्रुत संहिता)》的主要作者。
  • 南瀛天文教育园区南瀛天文馆是位于台南市大内区的天文教育馆,原为台南县政府以天文推广教育为主要目的而设立的“南瀛天文教育园区”,2010年县市合并时改名为“南瀛天文馆”,也和位于北区的台南
  • 劳伦·巴尔考劳伦·白考尔(英语:Lauren Bacall,1924年9月16日-2014年8月12日),原名贝蒂·琼安·佩尔斯克(Betty Joan Perske),是一位美国电影及舞台演员、模特儿及作家,以其低沉性感的嗓音闻名于好