希腊数字

✍ dations ◷ 2025-04-03 12:40:34 #希腊数字
希腊数字是一套使用希腊字母表示的记数系统,也称为爱奥尼亚数字、米利都数字、亚历山大数字、字母数字。在现代希腊,它们仍被使用在序数词上,并且很大程度上同西方使用罗马数字相似;而在日常使用基数词的时候人们还是使用阿拉伯数字。希腊最早的记数系统是首字母(acrophony)的阿提卡数字,同罗马数字的运作非常相似(罗马数字就是借鉴了希腊数字),使用以下的公式: I = 1 ,  Π = 5 ,  Δ = 10 ,  Π Δ = 50 {displaystyle mathrm {I} =1{mbox{, }}Pi =5{mbox{, }}Delta =10{mbox{, }}Pi Delta =50,} , H = 100 ,  Π H = 500 ,  X = 1000 ,  Π X = 5000 {displaystyle mathrm {H} =100{mbox{, }}Pi mathrm {H} =500{mbox{, }}mathrm {X} =1000{mbox{, }}Pi mathrm {X} =5000,} , M = 10000 {displaystyle mathrm {M} =10000,}  以及  Π M = 50000 {displaystyle Pi mathrm {M} =50000,} 。从前4世纪起,阿提卡数字被一个半十进制的字母系统取代,也被称为爱奥尼亚数字。每个个位数字 ( 1 , 2 , 3 , … , 9 ) {displaystyle (1,2,3,ldots ,9)} 由一个字母表示,每个十位数字 ( 10 , 20 , 30 , … , 90 ) {displaystyle (10,20,30,ldots ,90)} 由另一些字母表示,并且百位数字亦如此。这样要求27个字母,而24个希腊字母不够使用。因此三个废弃的希腊字母被重新使用:Digamma( Ϝ {displaystyle mathrm {Digamma} } ,同时使用的也有Stigma Ϛ {displaystyle mathrm {Stigma} } )表示6,Koppa( Ϟ {displaystyle mathrm {Koppa} } )代表90,以及Sampi( Ϡ {displaystyle mathrm {Sampi} } )表示900。参见数字:Digamma, Stigma, Koppa, Sampi。后接一个尖音符“'”用来将数字和字母区分开来。爱奥尼亚数字通过右加左减的原则将字母按照数值组合成想要表达的值,比如241表示成“ σ μ α ′ ( 241 = 200 + 40 + 1 ) {displaystyle sigma mu alpha '(241=200+40+1),} ”、97表示成“ γ ρ ′ ( 97 = 100 − 3 ) {displaystyle gamma rho '(97=100-3),} ”(左减原则可跨位,却必须1至3位,94应表示成“ ι ρ δ ′ ( 94 = 100 − 10 + 4 ) {displaystyle iota rho delta '(94=100-10+4),} ”而非“ ϛ ρ ′ ( 94 = 100 − 6 ) {displaystyle mathrm {stigma} rho '(94=100-6),} ”,同阿拉伯数字个十百分位概念)。要表达1,000至999,999的数字,相同的字母被重复是用来表示千、万和十万。在字母前置一个倒转的尖音符来将它与标准用法区分,倒转的尖音符的数目代表乘1000的倍数。如2005表示为“ , β ϵ ′ ( 2005 = 2000 + 5 ) {displaystyle ,beta epsilon '(2005=2000+5),} ”、3,999,700表示为“ τ , , δ ′ ( 3 , 999 , 700 = 4 , 000 , 000 − 300 ) {displaystyle tau ,,delta '(3,999,700=4,000,000-300),} ”。在现代希腊,大写字母更为常见,如 Φιλιππος Εʹ 即为腓力五世。希腊人使用“Myriad”表示“万”,“万万”以表示“亿”。例:M , δ ϕ π β ψ θ ′ = 45 , 820 , 709 = 4582 ⋅ 10 , 000 + 709 {displaystyle {begin{alignedat}{2}{stackrel {,delta phi pi beta }{mathrm {M} }}psi theta '&=45,820,709\&=4582cdot 10,000+709\end{alignedat}}}自然哲学家阿基米德在他的《数沙者》一篇中提出了更为先进的表示大数的方法,比如沙滩上沙粒的数目,以及宇宙中所有世界里的所有沙滩上的所有沙粒的数目。希腊世界的天文学家将这一系统延伸为六十进制的按位记数制系统,使每一位表示最高至59的数值,并由一个特别的符号表示零,它的用法更接近现代的零而非简单的占位符。不过,按位计数一般局限于数字的分数部分(称为分、秒、毫等),而它们不用再数字的整数部分。这个系统可能由喜帕恰斯于约前140年从巴比伦数字引入。其后它又被托勒密、特翁(Θεος)及其女希帕提娅所采用。希腊六十进制中表示零的符号几度变更。二世纪中纸莎草上使用的是一个非常小的圆圈,其上画有一道数厘米长的横杠,横杠两端有不同的收尾。后来上横杠缩短到仅有一厘米左右,与现代的Omicron(ō)非常相似。在后期的中世纪阿拉伯手稿中当使用字母数字的时候它仍被应用。在拜占庭时期的手稿中上横杠逐渐被省略,成为单纯的ο。这个逐渐向ο变化的过程说明其源自ουδεν(表示“无”)的字首这一假说不足以成立。托勒密的一些真的“零”出现在他的日食表的第一行,这是一个计算月球中心和太阳中心(对于日食)或是地球阴影中心(对于月食)的角度差的表格。所有的这些“零”以0 | 0 0的形式出现,即托勒密使用了三个上述的符号来代表一个零。中间的竖线表示整数部分实际上单列于左面,在他的表格中被称为“数位”(digit),每一个代表五角分;而分数部分被称为“掩始分”(immersion minute),分别为一位的60分之一和360分之一,。Template:Greek language(英语:Template:Greek language)

相关

  • 喷昔洛韦喷昔洛韦(Penciclovir)是鸟嘌呤类似物类抗病毒药物, 用于治疗多种疱疹病毒感染。具有毒性低,病毒敏感性高等特点。喷昔洛韦口服吸收低,常用于局部给药。 泛昔洛韦是喷昔洛韦的前
  • 寄主宿主(英语:Host),也称为寄主,是指为寄生物包括寄生虫、病毒等提供生存环境的生物。最终宿主(primary host或definitive host)是指寄生物的成虫赖以寄生的物种。这类宿主通常为寄生
  • 众议院多数党(232)少数党(199)空缺(4)美利坚合众国众议院(英语:United States House of Representatives)为美国国会两院之一,另一院为参议院(上议院)。众议院是美国的下议院,美国各州在众议院
  • 杆状核粒细胞杆状核粒细胞(英语:band cell、band neutrophil、stab cell)是一种正在骨髓进行粒细胞生成(英语:granulopoiesis)的粒细胞前体,也会被释出到血液中,由晚幼粒细胞(metamyelocyte)发育而
  • 环境监测作业环境监测是通过对人类和环境有影响的各种物质的含量、排放量的检测,跟踪环境质量的变化,确定环境质量水平,为环境管理、污染治理等工作提供基础和保证。简单地说,了解环境水
  • 水中分娩水中分娩,或水中生产(Water birth)是一种在暖水中诞下胎儿的分娩方式。严格来说,是分娩的第一及第二阶段在水中进行,第三阶段(排出胎盘)仍需离开水面处理。支持者认为,这种分娩方式
  • 电子排布电子排布,或称电子排序、电子构型,指电子在原子、分子或其他物理结构中的每一层电子层上的排序及排列形态。正如其他基本粒子,电子遵从量子物理学,而不是一般的经典物理学;电子也
  • 润唇膏润唇膏是一种个人护理用品,一般涂于嘴唇上。润唇膏涂于嘴唇上后,能有效防止嘴唇因天气干燥而出现干裂及脱皮的情况。润唇膏的主要成分包括蜂蜡、凡士林、薄荷醇及樟脑,另外,现时
  • 永隆省永隆省(越南语:Tỉnh Vĩnh Long/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","
  • 西莫尼德斯西莫尼德斯(英语:Simonides of Ceos),(前556年-前468年)。古希腊科奥斯的抒情诗人之一,他是诗人巴库利德斯的叔父。作为诗人,他的创作遍及希腊:他曾在雅典希帕尔库斯的宫廷,在色萨利(公