首页 >
希腊数字
✍ dations ◷ 2025-04-02 12:37:05 #希腊数字
希腊数字是一套使用希腊字母表示的记数系统,也称为爱奥尼亚数字、米利都数字、亚历山大数字、字母数字。在现代希腊,它们仍被使用在序数词上,并且很大程度上同西方使用罗马数字相似;而在日常使用基数词的时候人们还是使用阿拉伯数字。希腊最早的记数系统是首字母(acrophony)的阿提卡数字,同罗马数字的运作非常相似(罗马数字就是借鉴了希腊数字),使用以下的公式:
I
=
1
,
Π
=
5
,
Δ
=
10
,
Π
Δ
=
50
{displaystyle mathrm {I} =1{mbox{, }}Pi =5{mbox{, }}Delta =10{mbox{, }}Pi Delta =50,}
,
H
=
100
,
Π
H
=
500
,
X
=
1000
,
Π
X
=
5000
{displaystyle mathrm {H} =100{mbox{, }}Pi mathrm {H} =500{mbox{, }}mathrm {X} =1000{mbox{, }}Pi mathrm {X} =5000,}
,
M
=
10000
{displaystyle mathrm {M} =10000,}
以及
Π
M
=
50000
{displaystyle Pi mathrm {M} =50000,}
。从前4世纪起,阿提卡数字被一个半十进制的字母系统取代,也被称为爱奥尼亚数字。每个个位数字
(
1
,
2
,
3
,
…
,
9
)
{displaystyle (1,2,3,ldots ,9)}
由一个字母表示,每个十位数字
(
10
,
20
,
30
,
…
,
90
)
{displaystyle (10,20,30,ldots ,90)}
由另一些字母表示,并且百位数字亦如此。这样要求27个字母,而24个希腊字母不够使用。因此三个废弃的希腊字母被重新使用:Digamma(
Ϝ
{displaystyle mathrm {Digamma} }
,同时使用的也有Stigma
Ϛ
{displaystyle mathrm {Stigma} }
)表示6,Koppa(
Ϟ
{displaystyle mathrm {Koppa} }
)代表90,以及Sampi(
Ϡ
{displaystyle mathrm {Sampi} }
)表示900。参见数字:Digamma, Stigma, Koppa, Sampi。后接一个尖音符“'”用来将数字和字母区分开来。爱奥尼亚数字通过右加左减的原则将字母按照数值组合成想要表达的值,比如241表示成“
σ
μ
α
′
(
241
=
200
+
40
+
1
)
{displaystyle sigma mu alpha '(241=200+40+1),}
”、97表示成“
γ
ρ
′
(
97
=
100
−
3
)
{displaystyle gamma rho '(97=100-3),}
”(左减原则可跨位,却必须1至3位,94应表示成“
ι
ρ
δ
′
(
94
=
100
−
10
+
4
)
{displaystyle iota rho delta '(94=100-10+4),}
”而非“
ϛ
ρ
′
(
94
=
100
−
6
)
{displaystyle mathrm {stigma} rho '(94=100-6),}
”,同阿拉伯数字个十百分位概念)。要表达1,000至999,999的数字,相同的字母被重复是用来表示千、万和十万。在字母前置一个倒转的尖音符来将它与标准用法区分,倒转的尖音符的数目代表乘1000的倍数。如2005表示为“
,
β
ϵ
′
(
2005
=
2000
+
5
)
{displaystyle ,beta epsilon '(2005=2000+5),}
”、3,999,700表示为“
τ
,
,
δ
′
(
3
,
999
,
700
=
4
,
000
,
000
−
300
)
{displaystyle tau ,,delta '(3,999,700=4,000,000-300),}
”。在现代希腊,大写字母更为常见,如 Φιλιππος Εʹ 即为腓力五世。希腊人使用“Myriad”表示“万”,“万万”以表示“亿”。例:M
,
δ
ϕ
π
β
ψ
θ
′
=
45
,
820
,
709
=
4582
⋅
10
,
000
+
709
{displaystyle {begin{alignedat}{2}{stackrel {,delta phi pi beta }{mathrm {M} }}psi theta '&=45,820,709\&=4582cdot 10,000+709\end{alignedat}}}自然哲学家阿基米德在他的《数沙者》一篇中提出了更为先进的表示大数的方法,比如沙滩上沙粒的数目,以及宇宙中所有世界里的所有沙滩上的所有沙粒的数目。希腊世界的天文学家将这一系统延伸为六十进制的按位记数制系统,使每一位表示最高至59的数值,并由一个特别的符号表示零,它的用法更接近现代的零而非简单的占位符。不过,按位计数一般局限于数字的分数部分(称为分、秒、毫等),而它们不用再数字的整数部分。这个系统可能由喜帕恰斯于约前140年从巴比伦数字引入。其后它又被托勒密、特翁(Θεος)及其女希帕提娅所采用。希腊六十进制中表示零的符号几度变更。二世纪中纸莎草上使用的是一个非常小的圆圈,其上画有一道数厘米长的横杠,横杠两端有不同的收尾。后来上横杠缩短到仅有一厘米左右,与现代的Omicron(ō)非常相似。在后期的中世纪阿拉伯手稿中当使用字母数字的时候它仍被应用。在拜占庭时期的手稿中上横杠逐渐被省略,成为单纯的ο。这个逐渐向ο变化的过程说明其源自ουδεν(表示“无”)的字首这一假说不足以成立。托勒密的一些真的“零”出现在他的日食表的第一行,这是一个计算月球中心和太阳中心(对于日食)或是地球阴影中心(对于月食)的角度差的表格。所有的这些“零”以0 | 0 0的形式出现,即托勒密使用了三个上述的符号来代表一个零。中间的竖线表示整数部分实际上单列于左面,在他的表格中被称为“数位”(digit),每一个代表五角分;而分数部分被称为“掩始分”(immersion minute),分别为一位的60分之一和360分之一,。Template:Greek language(英语:Template:Greek language)
相关
- 婴儿婴儿是指刚出生的儿童,是人类一生的第一阶段。根据《说文解字》所述,婴儿的“婴”字本意为女性的颈部饰物,后引申解作为抱在胸前哺乳之初生儿。而婴儿的英文“infant”源于拉丁
- 多糖多糖(英语:Polysaccharide)由多个单糖分子脱水聚合,以糖苷键连接而成,可形成直链或者有分支的长链,水解后得到相应的单糖和寡糖。例如用来储存能量的淀粉和糖原,以及用来组成生物结
- 甲状腺炎甲状腺炎(Thyroiditis)是发生在甲状腺的炎症,包括甲状腺功能亢进症或甲状腺机能低下症,是内分泌学疾病的一种。 甲状腺位于颈部的前方、喉结以下,负责生产控制生陈代谢的荷尔蒙。
- 血管舒张剂血管舒张是指在血管壁的平滑肌松弛下,令体内血管扩阔的情况。由于空间增大让血液流过,这会降低了血压。它的相反过程称为血管收缩。血管舒张可以自然产生或经由血管舒张剂引起
- 网络成瘾症网络成瘾症(英语:Internet addiction disorder,缩写作IAD),亦作不当网络使用(problematic Internet use)或病态网络使用(pathological Internet use),简称网瘾,泛指对于互联网的过度使
- 浮肿水肿(edema、/ɪˈdimə/、oedema、dropsy、hydropsy;希腊语 οἴδημα oídēma, "swelling"),又称浮肿,是指人体皮下空腔因体液异常堆积所产生的肿大症状。水肿是指血管外
- 产气荚膜梭菌产气荚膜杆菌(学名:Clostridium perfringens)是革兰氏阳性杆状厌氧菌,因能分解肌肉和结缔组织中的糖类而产出大量气体以及可以在体内能形成荚膜而得名。发现于人类和其他脊椎动
- 建筑美国对建筑学的贡献之一为摩天大楼。那些大胆直线成为了它资本家能量的标志。新建筑技术和电梯的发明带来新的可能性。在1884年第一座摩天大楼矗立在伊利诺伊州芝加哥市内。
- 死水死水又称滞水,为不流动的水体,水体之所在地没有流通的出入口。形成死水之地包括路边的小凹地、花园中的泥泞,甚至人工制造的器皿皆能形成死水。严格来说,死海亦是死水的一种。死
- 休伊·皮尔斯·朗休伊·皮尔斯·朗(英语:Huey Pierce Long Jr.,又译作休伊·龙、休伊·朗格,1893年8月30日-1935年9月10日),美国民主党籍政治人物,前任路易斯安那州州长及联邦参议员。出生于路易斯安