希腊数字

✍ dations ◷ 2025-07-19 06:59:18 #希腊数字
希腊数字是一套使用希腊字母表示的记数系统,也称为爱奥尼亚数字、米利都数字、亚历山大数字、字母数字。在现代希腊,它们仍被使用在序数词上,并且很大程度上同西方使用罗马数字相似;而在日常使用基数词的时候人们还是使用阿拉伯数字。希腊最早的记数系统是首字母(acrophony)的阿提卡数字,同罗马数字的运作非常相似(罗马数字就是借鉴了希腊数字),使用以下的公式: I = 1 ,  Π = 5 ,  Δ = 10 ,  Π Δ = 50 {displaystyle mathrm {I} =1{mbox{, }}Pi =5{mbox{, }}Delta =10{mbox{, }}Pi Delta =50,} , H = 100 ,  Π H = 500 ,  X = 1000 ,  Π X = 5000 {displaystyle mathrm {H} =100{mbox{, }}Pi mathrm {H} =500{mbox{, }}mathrm {X} =1000{mbox{, }}Pi mathrm {X} =5000,} , M = 10000 {displaystyle mathrm {M} =10000,}  以及  Π M = 50000 {displaystyle Pi mathrm {M} =50000,} 。从前4世纪起,阿提卡数字被一个半十进制的字母系统取代,也被称为爱奥尼亚数字。每个个位数字 ( 1 , 2 , 3 , … , 9 ) {displaystyle (1,2,3,ldots ,9)} 由一个字母表示,每个十位数字 ( 10 , 20 , 30 , … , 90 ) {displaystyle (10,20,30,ldots ,90)} 由另一些字母表示,并且百位数字亦如此。这样要求27个字母,而24个希腊字母不够使用。因此三个废弃的希腊字母被重新使用:Digamma( Ϝ {displaystyle mathrm {Digamma} } ,同时使用的也有Stigma Ϛ {displaystyle mathrm {Stigma} } )表示6,Koppa( Ϟ {displaystyle mathrm {Koppa} } )代表90,以及Sampi( Ϡ {displaystyle mathrm {Sampi} } )表示900。参见数字:Digamma, Stigma, Koppa, Sampi。后接一个尖音符“'”用来将数字和字母区分开来。爱奥尼亚数字通过右加左减的原则将字母按照数值组合成想要表达的值,比如241表示成“ σ μ α ′ ( 241 = 200 + 40 + 1 ) {displaystyle sigma mu alpha '(241=200+40+1),} ”、97表示成“ γ ρ ′ ( 97 = 100 − 3 ) {displaystyle gamma rho '(97=100-3),} ”(左减原则可跨位,却必须1至3位,94应表示成“ ι ρ δ ′ ( 94 = 100 − 10 + 4 ) {displaystyle iota rho delta '(94=100-10+4),} ”而非“ ϛ ρ ′ ( 94 = 100 − 6 ) {displaystyle mathrm {stigma} rho '(94=100-6),} ”,同阿拉伯数字个十百分位概念)。要表达1,000至999,999的数字,相同的字母被重复是用来表示千、万和十万。在字母前置一个倒转的尖音符来将它与标准用法区分,倒转的尖音符的数目代表乘1000的倍数。如2005表示为“ , β ϵ ′ ( 2005 = 2000 + 5 ) {displaystyle ,beta epsilon '(2005=2000+5),} ”、3,999,700表示为“ τ , , δ ′ ( 3 , 999 , 700 = 4 , 000 , 000 − 300 ) {displaystyle tau ,,delta '(3,999,700=4,000,000-300),} ”。在现代希腊,大写字母更为常见,如 Φιλιππος Εʹ 即为腓力五世。希腊人使用“Myriad”表示“万”,“万万”以表示“亿”。例:M , δ ϕ π β ψ θ ′ = 45 , 820 , 709 = 4582 ⋅ 10 , 000 + 709 {displaystyle {begin{alignedat}{2}{stackrel {,delta phi pi beta }{mathrm {M} }}psi theta '&=45,820,709\&=4582cdot 10,000+709\end{alignedat}}}自然哲学家阿基米德在他的《数沙者》一篇中提出了更为先进的表示大数的方法,比如沙滩上沙粒的数目,以及宇宙中所有世界里的所有沙滩上的所有沙粒的数目。希腊世界的天文学家将这一系统延伸为六十进制的按位记数制系统,使每一位表示最高至59的数值,并由一个特别的符号表示零,它的用法更接近现代的零而非简单的占位符。不过,按位计数一般局限于数字的分数部分(称为分、秒、毫等),而它们不用再数字的整数部分。这个系统可能由喜帕恰斯于约前140年从巴比伦数字引入。其后它又被托勒密、特翁(Θεος)及其女希帕提娅所采用。希腊六十进制中表示零的符号几度变更。二世纪中纸莎草上使用的是一个非常小的圆圈,其上画有一道数厘米长的横杠,横杠两端有不同的收尾。后来上横杠缩短到仅有一厘米左右,与现代的Omicron(ō)非常相似。在后期的中世纪阿拉伯手稿中当使用字母数字的时候它仍被应用。在拜占庭时期的手稿中上横杠逐渐被省略,成为单纯的ο。这个逐渐向ο变化的过程说明其源自ουδεν(表示“无”)的字首这一假说不足以成立。托勒密的一些真的“零”出现在他的日食表的第一行,这是一个计算月球中心和太阳中心(对于日食)或是地球阴影中心(对于月食)的角度差的表格。所有的这些“零”以0 | 0 0的形式出现,即托勒密使用了三个上述的符号来代表一个零。中间的竖线表示整数部分实际上单列于左面,在他的表格中被称为“数位”(digit),每一个代表五角分;而分数部分被称为“掩始分”(immersion minute),分别为一位的60分之一和360分之一,。Template:Greek language(英语:Template:Greek language)

相关

  • 双球菌双球菌(拉丁语:diplococcus,复数diplococci)是球菌的一类,其细胞沿一平面分裂,而子细胞成双排列。代表种类有脑膜炎双球菌(Neisseria meningitidis)、淋球菌(Neisseria gonorrhoeae)等
  • COX-2环氧合酶(拉丁语:Cyclooxygenase,简称COX)是一种酶(又名酵素),负责合成重要的生物激素——前列腺素家族的导介物质。当身体组织受到某种刺激如外伤、感染等会激活环氧合酶,使花生四
  • 淋巴细胞淋巴细胞(英语:lymphocyte),也称淋巴球,为白细胞中体积最小的一种,直径6—8微米;在人体约占白细胞的20—30%,圆形细胞核,细胞质很少。某些疾病可以影响淋巴细胞数目的增减,如患肺结核
  • VRE抗万古霉素肠球菌(vancomycin-resistant Enterococcus,缩写作 VRE),又名万古霉素抗药性肠球菌,是肠球菌属下的一种细菌,有着对万古霉素这种抗生素的抗药性。在肠球菌属中,对人类有
  • 鸟是鸟纲(学名:Aves)动物的通称,是唯一存活至今的恐龙,现代所有鸟类在生物学上也被分类为鸟形恐龙(即鸟翼类)的一部分;鸟纲的全体成员均为两足、恒温、卵生、身披羽毛且色彩鲜艳各异
  • 营养器官营养器官通常指植物的根、茎、叶等器官。 营养器官的基本功能是维持植物生命,这些功用抱括了如:光合作用等。但在某些状况之下,可能有 无性生殖/营养生殖,意指,这些营养器官可能
  • 辅酶辅因子(英语:cofactor)指与酶(酵素)结合且在催化反应中必要的非蛋白质化合物。某些分子如水和部分常见的离子所扮演的角色和辅因子相当类似,但由于含量不受限制且普遍存在,因此不归
  • 心前壁心脏(英语:heart),常简称心,是一种在人类和其他动物都有的肌造器官,它的功用是推动循环系统中血管的血液。血液提供身体氧气以及养分,同时也协助身体移除代谢废弃物(英语:metabolic w
  • 米利都米利都(希腊语:Μίλητος)是位于安纳托利亚西海岸线上的一座古希腊城邦,靠近米安得尔河口。它在赫梯文献中被称为Millawanda或者Milawata,在荷马的《伊利亚特》中也有出现。
  • 萨摩斯隧道萨摩斯隧道,或称为尤帕里内奥输水道(希腊语:Ευπαλίνειο όρυγμα),是公元前6世纪在爱琴海萨摩斯岛开凿的隧洞,以引来卡斯特罗山另一侧的泉水。据希罗多德记载,工程