首页 >
五边形
✍ dations ◷ 2025-11-07 08:21:04 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用
{
5
}
{displaystyle left{5right}}
来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中
R
{displaystyle R}
为外接圆半径。边长为
t
{displaystyle t}
的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中,
P
{displaystyle P}
是周长、
r
{displaystyle r}
是边心距。正五边形的
P
{displaystyle P}
和
r
{displaystyle r}
可由三角函数计算:其中,
t
{displaystyle t}
是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中,
r
{displaystyle r}
为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。
C
{displaystyle C}
为单位圆圆心,
M
{displaystyle M}
是圆
C
{displaystyle C}
半径的中点。
D
{displaystyle D}
是位于垂直于
M
C
{displaystyle MC}
的另外一条半径的圆周上。作
∠
C
M
D
{displaystyle angle CMD}
的角平分线,令
Q
{displaystyle Q}
为
∠
C
M
D
{displaystyle angle CMD}
的角平分线与
C
D
{displaystyle CD}
的交点。作过
Q
{displaystyle Q}
平行于
M
C
{displaystyle MC}
的直线,令之与圆
C
{displaystyle C}
相交的交点为
P
{displaystyle P}
,则
D
P
{displaystyle DP}
为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形
D
C
M
{displaystyle DCM}
和
Q
C
M
{displaystyle QCM}
。利用勾股定理,较大的三角形斜边为
5
2
{displaystyle {frac {sqrt {5}}{2}}scriptstyle }
。小三角形其中一股h可由半角公式求得:其中,角
ϕ
{displaystyle phi }
可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长
a
{displaystyle a}
可借由再带一次勾股定理得:欲求出五边形边长
s
{displaystyle s}
可透过左侧的三角形,由勾股定理得:五边形边长
s
{displaystyle s}
为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。
相关
- 斑贴试验贴布试验,又名斑贴试验,是一种用来确定是否有特定物质会导致患者过敏性或发炎肌肤。任何人被怀疑有过敏性接触性皮肤炎(英语:Allergic contact dermatitis)或过敏性皮炎,需要经过
- 用户界面设计用户界面设计(英语:User interface design,UI),又称用户界面工程,指的是在用户体验和交互的指导下对计算机、电器、机器、移动通讯设备、软件或应用以及网站进行的设计。 用户界面
- 乙酰胺乙酰胺是由乙酸衍生出的酰胺,分子式为CH3CONH2。纯品在室温下为白色晶状固体,可由乙酸铵失水获得。它被用作增塑剂,也是有机合成的重要原料。乙酰胺并不十分易燃,但燃烧时会放出
- 线粒体膜间隙线粒体膜间隙(英语:Intermembrane space of mitochondria)也称为“线粒体膜间间隙”,是线粒体外膜与线粒体内膜之间的空隙,宽约6-8nm,其中充满无定形液体。由于线粒体外膜含有孔蛋
- 华华(英语:Corona1)为一种自然光源透过薄云中的微细水滴所产生的特殊光象2。在太阳周遭形成一圈彩虹光环即为日华(Solar Corona);而在月亮旁绕成一圈的彩虹光环即为月华(Lunar Corona
- 阿蒙涅姆赫特五世塞赫姆卡拉(英语:Sekhemkare),埃及第十三王朝国王。据《都灵王表》记载,他在位6年。他统治时期的一座纪念碑上的几块被保存下来。他的名字还刻在尼罗河第二瀑布地区的努比亚尤龙
- 澳大利亚陆军澳大利亚陆军(Australian Army),为澳大利亚的陆上武装部队。与皇家澳大利亚海军、皇家澳大利亚空军构成澳大利亚的国防力量。澳大利亚陆军沿袭自英国陆军。大致可分成两个时期
- 牛皋牛皋(Niú Gāo,1087年-1147年),字伯远,汝州鲁山(今河南省平顶山市鲁山县)人,南宋抗金名将岳飞最为倚重的将领之一,官至捧日天武四厢都指挥使、宁国军承宣使、荆湖南路马步军副都总管,
- 阿噶多尔济阿噶多尔济(蒙古语:Агваржин,1423年-1453年),明朝称之为阿八丁王(阿巴喀尔津),鞑靼君主,第27代蒙古大汗,阿斋的次子,脱脱不花的异母弟。1451年,脱脱不花和掌权的太师也先决裂。阿
- 高草酸血症草酸盐是草酸形成的盐类,含有草酸根离子(C2O42−或(COO)22−)。由于草酸是二元酸,因此草酸盐分为正盐草酸盐与酸式盐草酸氢盐两类,后者含有HC2O4−。草酸根离子(见右图)可作配体,与
