五边形

✍ dations ◷ 2025-09-04 05:16:46 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 曲妥珠单抗曲妥珠单抗(通用名,国际非专利药品名称:Trastuzumab,商品名:赫赛汀(中国大陆及港澳)、贺癌平(台湾),罗氏Roche药厂生产)是一种作用于人类表皮生长因子受体II的单克隆抗体,主要用于治疗某
  • BCR结构 / ECOD1K1F, 2AIN· protein tyrosine kinase activity · Rho guanyl-nucleotide exchange factor activity · GTPase activator activity · protein binding
  • 反祖现象返祖现象(atavism)是指个别生物体出现了其祖先所具有的性状的现象。返祖现象在很多物种中都有发生,如双翅目昆虫的后翅已经退化为平衡槌,但偶尔会出现有两对翅膀的个体;家养的鸡
  • 欧洲议会本文是 欧洲联盟的政治与政府 系列条目之一欧洲议会(英语:European Parliament)是欧洲联盟事实上的两院制立法机关的下议院,唯一的一个直选议会机构;与欧盟理事会同为欧盟的主要
  • 法国大革命博物馆法国大革命博物馆(法语:Musée de la Révolution française)是世界上唯一一个关于法国大革命的专门博物馆,位于法国奥弗涅-罗讷-阿尔卑斯大区伊泽尔省维济伊,在格勒诺布尔以南1
  • 法式长棍面包法式长棍面包(法语:baguette,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gent
  • 马拉雅拉姆语马拉雅拉姆语(മലയാളം;malayāḷaṁ)是印度南部喀拉拉邦通行的语言,属于达罗毗荼语系,是印度22种官方语言之一,语言人口约3,570万人。“马拉雅拉姆”在马拉雅拉姆语里的意思
  • 第八届世界运动会第八届世界运动会(简称2009高雄世运,英语:The World Games 2009),于2009年7月16日至26日在中华民国台湾高雄市举行,是首次在台湾举办的国际性大型综合运动会,亦是第二次在亚洲举办
  • 切诺基切诺基国家森林(英语:Cherokee National Forest)是美国的一处国家森林,1920年6月14日建立,位处田纳西州,占地面积655,598英亩(2,653.11平方千米),最近的城市为约翰逊城。
  • span class=nowrapTaO(NOsub3/sub)sub3/sub/spa硝酸钽酰是一种无机化合物,化学式为TaO(NO3)3。硝酸钽酰由五氯化钽和五氧化二氮反应得到: