五边形

✍ dations ◷ 2025-10-20 23:23:00 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 核爆核爆炸是剧烈核反应中能量迅速释放的结果,可能是由核裂变、核聚变或者是这两者的多级串联组合所引发。尽管迄今为止几乎所有的聚变核武器都是以裂变装置作为基础的,但实际上纯
  • 超对称超对称(supersymmetry,简称SUSY)是费米子和玻色子之间的一种对称性,该对称性至今在自然界中尚未被观测到。物理学家认为这种对称性是自发破缺的。大型强子对撞机将会验证粒子是
  • GSH谷胱甘肽(英语:Glutathione),又称麸氨基硫,英文简写:GSH,属于三肽,由谷氨酸、半胱氨酸及甘氨酸所构成,其中第一个肽键与普通的肽键不同,是由谷氨酸的γ-羧基与半胱氨酸的氨基组成的,在
  • 路易斯·阿姆斯特朗路易斯·阿姆斯特朗(英语:Louis Armstrong,1901年8月4日-1971年7月6日),美国爵士乐音乐家。阿姆斯特朗是20世纪最著名的爵士乐音乐家之一,被称为“爵士乐之父”。他以超凡的个人魅
  • 贾迈勒·卡舒吉贾迈勒·艾哈迈德·卡舒吉(Jamal Ahmad Khashoggi,阿拉伯语:جمال خاشقجي‎,转写:Jamāl Khāshuqjī,.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","
  • GABA sub A / sub受体/subγ-氨基丁酸受体(英语:GABA receptor,简称GABA受体)是抑制性神经递质γ-氨基丁酸的受体,主要分为三类:γ-氨基丁酸A受体、γ-氨基丁酸B受体、γ-氨基丁酸C受体。其中A和C受体是离
  • 木瓜牛奶木瓜牛乳是在台湾广受欢迎的一种饮料,堪称经典台湾味之一,不仅深受台湾人的喜爱,也是许多观光客来台湾必喝的圣品,由木瓜、牛乳等主原料,与水及砂糖甚至碎冰等副原料制成。不仅在
  • 埃隆期埃隆期(Aeronian)是志留纪的第二个阶段,年代大约位于440.8–438.5百万年前。
  • 武士阶级政权武家政权指的是日本历史上从平安时代后期至江户时代,由武家栋梁(日语:武家の棟梁)(军事贵族(日语:軍事貴族))为首的、能够实效支配地方社会的武士阶级,即所谓的“武家”所掌握的中央政
  • Challenger Expedition 1873-76挑战者号科学考察是1872年至1876年期间,使用英国舰队挑战者号实施的一次科学考察活动,它完成了多项发现,为海洋学的建立奠定了基础。在苏格兰,爱丁堡大学和莫契斯东中学的查尔斯