五边形

✍ dations ◷ 2025-07-07 06:47:16 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 甲状腺功能亢进甲状腺功能亢进症(Hyperthyroidism),又称甲状腺机能亢进症,简称甲状腺亢进、甲亢,是一种由于体内过量的三碘甲腺原氨酸(T3)和 四碘甲腺原氨酸(T4,也即甲状腺素)造成的临床症状。而甲状
  • V03A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码V03(其它各种治疗用药品)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WHO
  • 膜性肾小球肾炎膜性肾小球肾炎(Membranous glomerulonephritis (MGN))是肾的缓慢进展性之疾病,影响年龄介于30至50岁之间,通常患者多属于白人。也是成人肾病症候群的第二种最常见的原因,而局
  • 特伦托特伦托(意大利语:Trento;又译为天特)是位于意大利特伦蒂诺-上阿迪杰大区西南部的市镇,为特伦托省首府,面积157平方公里,人口110,142人(2005年)。罗马教廷于1545至1563年在此召开大公
  • 三键三键(英语:Triple bond),是有机化学中原子与原子之间被3对价电子连结的共价键的称号。在有机化学中,所有的炔烃化合物都具有三键,同时,也有许多其他例子
  • 1924年巴黎夏奥会1924年夏季奥林匹克运动会为第八届夏季奥林匹克运动会(英语:Games of the VIII Olympiad,法语:les Jeux de la VIIIe Olympiade),是一场于1924年5月4日至7月27日在法国巴黎举行的
  • 异配生殖异配生殖(英语:anisogamy)是一种有性生殖,其需要两个配子的互相结合,其有着大小或形态的分别,较小的配子称为精细胞,产生精细胞的的器官或个体被定义为雄性,较大的配子称为卵细胞,产
  • 德国酸菜德国酸菜(德文:Sauerkraut;/ˈsaʊərkraʊt/;德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","
  • 阳含熙阳含熙(1918年4月29日-2010年8月29日),江西南昌人,中国生态学家、林学家。1939年毕业于金陵大学获森林学学士。1949年获澳大利亚墨尔本大学植物学院科学硕士学位。1950年获英国牛
  • 香铃草野西瓜苗(学名:Hibiscus trionum),又名香铃草、小秋葵、打瓜花、山西瓜秧,是一种锦葵科木槿属一年生草本植物。野西瓜苗的分枝横升或斜升,半空心,上有白色开叉的细毛,高约20-50cm,但