五边形

✍ dations ◷ 2024-12-23 00:38:58 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 低温物理学低温物理学 (Cryogenics),又称低温学,是物理学的分支,主要研究物质在低温状况下的物理性质的科学,有时也包括低温下获得的生成物和它的测量技术。而低温物理学中的低温定义为−1
  • 木酮糖-5-磷酸D-木酮糖-5-磷酸(英语:D-Xylulose 5-phosphate)是一个磷酸戊糖途径中的中间代谢产物,由酮糖核酮糖-5-磷酸而来。最近的研究表明,此物质在基因表达中也有重要作用,主要与转录因子Ch
  • 中央高原法国中央高原 ,又译中央山地(法语:Massif Central、奥克语:Massís Central / Massís Centrau),位于法国中南部,为一火山高原。北为西欧平原,东界隆河,南为比利牛斯山脉。最高点为桑
  • 拉丁裔西班牙裔(Hispanic)或西班牙语裔是美洲地区的一个特定语言族群,他们拥有来自于拉丁美洲或者伊比利亚半岛的血统。广义来说,西班牙裔包含所有在美洲居住并且自定义为西班牙裔或者
  • 组织细胞坏死性淋巴结炎菊池病,也称组织细胞坏死性淋巴结炎或菊池-藤本病。1972年由日本福冈大学病理学教授菊池昌弘(菊池 昌弘)发现,同年,另一名日本学者藤本吉秀(藤本 吉秀)也报告了这种疾病。菊池病是
  • 岩相学岩象学(英语:Petrography)是岩石学的一个分支,专注于岩石的详细描述。研究岩相学的人被称为岩象学家(英语:petrographer)。岩石中的矿物含量和组织(texture)的关系被详细的描述。岩
  • 鸡林君主 · 首都 · 文学史 · 教育史电影史 · 韩医史陶瓷史 · 戏剧史韩国国宝 · 朝鲜国宝鸡林州都督府(朝鲜语:계림대도독부)是公元7世纪到9世纪,唐朝在朝鲜半岛中南部
  • 杜鹃鸟杜鹃科(学名:Cuculidae)在动物分类学上是鸟纲鹃形目中的唯一科。中国古代也称子规、杜宇等。许多分布于欧、亚、非洲的杜鹃科鸟类属于孵卵寄生动物,这些杜鹃从不筑巢,而是将卵产
  • 触媒转化器催化转换器又称触媒转化器(catalytic converter)、触媒转换器,安装于汽车废气排放系统中,含有铂、钯及铑等贵金属作为触媒,利用催化机制减少有害废气,如碳氢化合物(HC)、一氧化碳(CO)
  • 液态氢液氢(LH2),也称液态氢,是由氢气经由降温而得到的液体。液态氢须要保存在非常低的温度下(大约在20.268开尔文,-252.8℃)。它通常被作为火箭发射的燃料。液态氢可做为储存氢气的一种