五边形

✍ dations ◷ 2025-04-25 00:52:54 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 晶体结构晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。Hauy最早提出晶体的规则外型是
  • 教义在宗教及比较宗教学中,教义(英语:dogma),又译为定理、信条、信理、教条、教理、定论,是一个或一组原则,被归源至由某个权威所制定,被认为是绝对正确,不可争辩的。它是一个意识型态或
  • 英国皇家空军(英语:Royal Air Force,RAF)为英国军队的航空作战军种,创设于1918年4月1日,为世界上第一支编成独立军种的空军。在一战胜过同盟国后,英国皇家空军成为了该时期最庞大的
  • 第3型高免疫球蛋白M症候群高免疫球蛋白M症候群是一种遗传病,其会导致免疫球蛋白同型转化的能力缺乏,IgM抗体无法转换成IgG、IgA、IgE等形式。此遗传病于美国的盛行率为1000000分之1。遗传方面,其遗传方
  • 前锯肌前锯肌(Serratus anterior muscle),是将肩胛骨内侧向前拉的胸部肌肉。每组两块的前锯肌从胸前部的肋骨开始,围绕体侧延伸到肩胛骨。 前锯肌可将肩胛骨内侧向前拉而外翻,使肩膀抬
  • 格奥尔格·弗里德里希·亨德尔格奥尔格·弗里德里希·亨德尔(德语:Georg Friedrich Händel,1685年2月23日-1759年4月14日),巴洛克音乐作曲家,创作作品类型有歌剧、神剧、颂歌及管风琴协奏曲,著名作品为《弥赛亚
  • Cyproterone acetate醋酸环丙孕酮(Cyproterone acetate,CPA),商品名有如色普龙、Androcur、安得卡等,是一种合成甾体抗雄激素、黄体制剂、抗促性腺激素。 因其阻止内源雄激素与其受体结合以及抑制雄
  • 温带阔叶林和混和林温带阔叶混交林是一种温带陆地生物群系,位于阔叶(英语:Broadleaf)树生态区,和针叶树与阔叶树的针叶混交林(英语:Mixed coniferous forest)生态区。“温带阔叶混交林”这一术语,由世界
  • 脊神经节背根神经节(或脊髓神经节也称为后根神经节),是一群位于脊髓后根神经的神经细胞体(神经节)。背根神经节包含传入感觉神经元的细胞体。背根神经节神经元的轴突被称为传入神经。在周
  • 1490年庆阳事件1490年庆阳事件( Ch'ing-yang event of 1490)或庆阳流星雨(Chíing-yang meteor shower)推测是发生在1490年3月或4月的流星雨或流星空中爆炸。这个地区是现在的陕西和甘肃的一