五边形

✍ dations ◷ 2025-07-08 15:33:48 #五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 女性生殖系统女性生殖系统是由人类女性的生殖器官组成的系统。可分成内生殖器官和外生殖器官,分别指生殖系统在体内不可见的部分和体外可见的部分。人类女性的生殖系统在出生时尚未发育成
  • 图像图像是人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜及显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质介质、胶片等等对光信号敏感
  • 泛种论泛种论,或称胚种论、宇宙撒种说(英语:Panspermia,希腊语:πανσπερμία ),是一种假说,猜想各种形态的微生物存在于全宇宙,并借着流星、小行星与彗星散播、繁衍。在泛种论相关
  • FeS硫化亚铁(化学式:FeS)是铁(II)的硫化物,标准状态下为黑褐色难溶于水的六方晶系晶体,具有非计量性质。它易被空气氧化,生成高价的铁氧化物(如四氧化三铁)和硫。粉末状的硫化亚铁会发
  • 功能主义建筑在建筑中,功能主义(英语:functionalism)是指建筑应该仅根据其用途和功能进行设计的原则。按照此原则设计的建筑称为功能主义建筑。该原则在行业内是一个令人困惑且有争议的问题,
  • NOWnewsNOWnews今日新闻,属综合性的网络新闻网站。于2008年4月正式上线,最大股东分别是游戏橘子、信义房屋。2008年4月1日,东森电视出售价值新台币数千万元的东森新闻报资产设备给中华
  • BaO氧化钡(化学式:BaO)是钡的正常氧化物,为白色固体。它可由钡在氧气中燃烧,或钡盐热分解制得:与水反应生成氢氧化钡:氧化钡可用作热阴极及阴极射线管中的涂层以及生产特定种类的玻璃,
  • 回应过程效度回应过程效度(英语:Response process validity)是心理统计学名词,属于测试效度(英语:Test validity),指的是受试者对于测验内容有多大程度的了解。譬如说:在不是变因的前提下,受试者对
  • 台北世界贸易中心坐标:25°2′2″N 121°33′44″E / 25.03389°N 121.56222°E / 25.03389; 121.56222台北世界贸易中心(简称台北世贸)位在台湾台北市信义计划区,为一座多功能的工商服务展演设
  • 十二酸Laurostearic acid, Vulvic acid, 1-Undecanecarboxylic acid, Duodecylic acid, C12:0 (Lipid numbers)月桂酸(英文:Lauric acid),系统学名称为十二烷酸(英文:dodecanoic acid),是