多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如的次数降幂排列。而
则是以的次数升幂排列。
两个多项式相加可以看作是对两组单项式的和进行重组与合并同类项。通过加法结合律,可以将同类项放在一起,合并之后就得到了两个多项式的和。例如以下的两个多项式:
它们的和是:
化简之后得到:
例:、则
计算两个多项式相乘时,首先使用乘法对加法的分配律将各项拆出,然后运用乘法结合律整合每一项,最后和加法一样整合同类项,就能得到乘积多项式。例如以下的两个多项式:
计算它们的乘积,步骤如下:
化简之后得到:
和整数之间的带余除法类似,一元多项式之间也可以进行带余除法。可以证明,设有多项式和非零多项式,则存在唯一的多项式和,满足:
而多项式若非零多项式,则其乘幂严格小于的乘幂。
作为特例,如果要计算某个多项式除以一次多项式得到的余多项式,可以直接将代入到多项式中。除以的余多项式是。
具体的计算可以使用类似直式除法的方式。例如,计算除以,列式如下:
因此,商式是,余式是。
,f(x)除以g(x)
,应用多项式乘法的矩阵算法
因式分解是指把一个多项式分解成几个(非常数的)多项式的乘积。其中的每一个多项式称为原多项式的因式。因式分解有助于理解多项式的性质,比如根的分布等等。因式分解的结果通常和多项式所在的系数域有关。如果要求因式分解后的每一个因式都在一定的系数域(比如有理数域)里面,那么结果可能和要求它们在另一个系数域(比如说复数域)里不同。比如多项式在有理数域内分解为:
在实数域内则可以进一步分解为:
在复数域内还可以再进一步分解:
如果给定了系数域,那么在不考虑因式排列顺序的情况下,因式分解是唯一的。如果(在给定的系数域上)一个多项式不能被表示为次数严格比它低的多项式的乘积,就称它为不可约多项式。因式分解一般是指将多项式分解到不可再分的多项式乘积,也就是不可约多项式的乘积,否则称其为不完全的因式分解。
对于一元多项式来说,所有复系数多项式都可以分解成若干个一次因式的乘积,这个结论等价于代数基本定理。所有实系数多项式都可以分解为次数不超过二次的多项式的乘积。比较复杂的是有理数系数多项式的因式分解。首先,给定一个有理系数多项式,可以将其乘以一个特定的有理数,将其变成一个整系数多项式,所以有理系数多项式和整系数多项式的因式分解是等价的。如果一个整系数多项式各项系数的最大公约数是,就称其为本原多项式。不是本原多项式的整系数多项式,假设其各项系数的最大公约数是,那么可以将的因式分解问题转化为本原多项式的因式分解问题。所以有理数系数和整系数多项式的因式分解都等价于本原多项式的因式分解问题。利用本原多项式可以证明:整系数多项式如果能分解为有理系数多项式的乘积,那么也必然能分解成整系数多项式的乘积。艾森斯坦判别法给出了判定整系数多项式不可约的充分条件。另一个常用的准则与多项式的最高次项系数与常数项系数有关。如果某个多项式有某个有理数根(既约形式),那么分子必然整除常数项系数,而分母也必然整除最高次项系数。
多项式函数是指给多项式中的不定元赋值的映射。比如说一元多项式函数的普遍形式为:
其中的是一个代数,可以是有理数、实数或复数。多项式函数是函数而不是多项式,但多项式函数之间也可以进行像多项式一般的加法、乘法运算,其结果仍旧是多项式函数。所以所有的多项式函数也构成一个环,而且这个环显然和多项式环同构。
与多元多项式对应的也有多元多项式函数。比如就是一个与二元多项式对应的二元多项式函数。
所有多项式函数都是光滑函数(无限可微连续函数),因此可以定义其导数、原函数等概念。另外,当每个变量都趋于无穷大(绝对值)的时候,多项式函数的值(绝对值)也趋于无穷大。
如果把(一元)多项式中的所有系数全都约束为到某个正整数
相关
- Creative Commons Attribution 3.0 Unported知识共享许可协议(英语:Creative Commons license,或创用CC许可)是一种公共著作权许可协议(英语:Public copyright license),其允许分发受著作权保护的作品。一个创作共享许可用于一
- 三叉神经痛三叉神经痛(Trigeminal neuralgia,TN,或TGN)是一个严重的神经性慢性疼痛症,主要影响三叉神经(也称为第五对脑神经:由三个分支的神经将面部感觉传导到大脑,并且从大脑控制面部运动的
- 晶格空位在晶体学中, 一个晶格空位是晶体的点缺陷之一。 当一个晶格格位上缺失了一个粒子(原子,离子甚至分子),这种缺陷既为晶格空位。除了被称为晶质的缺陷的晶体本质上具有的不完整性
- 地源热泵系统可持续发展主题可再生能源主题环境主题地源热泵系统以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。根据地热能交换
- ʢ浊会厌颤音(voiced epiglottal trill)是辅音的一种,用于一些语言当中。普通话中无此音。国际音标以⟨ʢ⟩代表此音,X-SAMPA音标以⟨<\⟩代表此音。浊会厌颤音的特征:当符号成对出
- 埃米埃格斯特朗(Ångström, 简称埃,符号Å)是一个长度计量单位。它不是国际制单位,但是可与国际制单位进行换算,即1 Å = 10–10 米 = 0.1纳米。一般用于原子直径、化学键长和可见光
- .jp.jp为日本国家和地区顶级域(ccTLD)的域名,于1986年开始使用,由日本注册服务公司(Japan Registry Services)管理。.jp域名设立早期由JPNIC负责管理,随着.jp的使用率日渐提高,2000年12
- 内布拉斯加城内布拉斯加城(英语:Nebraska City)是一个位于美国内布拉斯加州奥托县的城市。根据2010年美国人口普查,该地共人口7289人,而该地的面积约为12.88平方千米。同时该地也是奥托县的县
- 河狐河狐(Lycalopex gymnocercus),又名巴拉圭狐或巴拉圭胡狼,是南美洲彭巴斯草原的一种伪狐。它们分布在阿根廷、乌拉圭、巴拉圭及巴西的南美洲中部。河狐像山狐,但较为细小,毛色呈灰
- 脊髓灰质炎疫苗脊髓灰质炎疫苗(英语:Polio vaccines)又称小儿麻痹疫苗。是一种用来对抗脊髓灰质炎(小儿麻痹)的疫苗,世界上主要通用类型有两大类。第一类是由乔纳斯·爱德华·索尔克所研发出来的