拐点

✍ dations ◷ 2025-08-23 14:54:14 #几何术语,微分学

拐点(Inflection point)或称反曲点,是一条连续曲线改变凹凸性的点,或者等价地说,是使切线穿越曲线的点。

决定曲线的拐点有助于理解曲线的外形,这在描绘曲线图形时特别有用。

若曲线图形在一点由凸转凹,或由凹转凸,则称此点为拐点。直观地说,拐点是使切线穿越曲线的点。

若该曲线图形的函数在某点的二阶导数为零或不存在,且二阶导数在该点两侧符号相反,该点即为函数的拐点。这是寻找拐点时最实用的方法之一。

拐点的必要条件:设 f ( x ) {\displaystyle f(x)} ( a , b ) {\displaystyle (a,b)} 内二阶可导, x 0 ( a , b ) {\displaystyle x_{0}\in (a,b)} ,若 ( x 0 , f ( x 0 ) ) {\displaystyle (x_{0},f(x_{0}))} 是曲线 y = f ( x ) {\displaystyle y=f(x)} 的一个拐点,则 f ( x 0 ) = 0 {\displaystyle f''(x_{0})=0} 。比如, f ( x ) = x 4 {\displaystyle f(x)=x^{4}} ,有 f ( 0 ) = 0 {\displaystyle f''(0)=0} ,但是0两侧全是凸,所以0不是函数 f ( x ) = x 4 {\displaystyle f(x)=x^{4}} 的拐点。

拐点的充分条件:设 f ( x ) {\displaystyle f(x)} ( a , b ) {\displaystyle (a,b)} 内二阶可导, f ( x 0 ) = 0 {\displaystyle f''(x_{0})=0} ,若在 x 0 {\displaystyle x_{0}} 两侧附近 f ( x ) {\displaystyle f''(x)} 异号,则点 ( x 0 , f ( x 0 ) ) {\displaystyle (x_{0},f(x_{0}))} 为曲线的拐点。否则(即 f ( x 0 ) {\displaystyle f''(x_{0})} 保持同号), ( x 0 , f ( x 0 ) ) {\displaystyle (x_{0},f(x_{0}))} 不是拐点。

拐点可以根据 f ( x ) {\displaystyle f'(x)} 为零或不为零,进行分类:

例如: y = x 3 {\displaystyle y=x^{3}} 的点 ( 0 , 0 ) {\displaystyle (0,0)} 是一个鞍点,切线为 x {\displaystyle x} 轴,切线正好将图像分为两半。

平面参数曲线的拐点是使其曲率变号的点,此时曲率中心(居于曲线凹侧)从曲线的一侧换至另一侧。

双正则点是使得参数曲线的一阶与二阶微分(它们是向量)线性无关的点。在双正则点上,曲线既无拐点亦非直线。在非双正则点上曲率为零,但是不一定有变号。在寻找参数曲线的拐点时,我们通常先以微分找出非双正则点,继之研究其局部性状,以判定是否为拐点。

注:某些作者偏好将拐点定义为“使一阶与二阶微分平行的点”,在此定义下,切线不一定在该点穿越曲线本身。

C {\displaystyle C} 为域 F {\displaystyle F} 上的平面代数曲线,其拐点定义为一平滑点 P C ( F ) {\displaystyle P\in C(F)} ,使得该点切线 L P {\displaystyle L_{P}} C {\displaystyle C} P {\displaystyle P} 点的相交重数 3 {\displaystyle \geq 3}

注意到一条曲线与 C {\displaystyle C} P {\displaystyle P} 点相切的充要条件是相交重数 2 {\displaystyle \geq 2} 。当 F = R {\displaystyle F=\mathbb {R} } 时,代数曲线的拐点定义等价于上节注记中的广义定义。

相关

  • 腹肌腹直肌(简称腹肌)是指躯干下半部(或称腹部)的器官,由若干片状的肌肉保护着,并固定在适当的位置。他们包括两块腹直肌,沿着身体前面,从胸廓延伸到骨盆。当腹直肌收缩时,腹部被往内拉。
  • 万维网万维网(英语:World Wide Web)亦作WWW、Web,是一个透过互联网访问的,由许多互相链接的超文本组成的系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的
  • 飞秒化学飞秒化学(femtochemistry)是物理化学的一支,研究在极小的时间内化学反应的过程和机理;这一领域涉及的时间间隔短至约10-15秒,即1飞秒,这也就是名称的来源。1999年,艾哈迈德·泽维尔
  • 磁场在电磁学里,磁石、磁铁、电流及含时电场,都会产生磁场:3-4。处于磁场中的磁性物质或电流,会因为磁场的作用而感受到磁力,因而显示出磁场的存在。磁场是一种矢量场;磁场在空间里的
  • 淡水生物学淡水生物学是研究内陆水域的生物产量及影响此产量因素的一门科学。淡水生物学揉合内陆水域特别是淡水水域的物理学、化学、气象学和生物学而构成的一门新兴的学科。淡水生物
  • 副热带气旋亚热带气旋,又称副热带气旋,是一个与锋面不相关的低气压,特性介乎热带气旋及温带气旋之间,通常是高空冷心低气压伸延至地面或高纬冷心低气压割离至低纬形成的。在合适的环境下,亚
  • 索贝克霍特普二世威格夫(Khutawyre Wegaf或者Ugaf)是埃及第十二王朝的最后一位法老。Kim Ryholt认为Sekhemre Khutawy是阿蒙涅姆赫特四世之子,约公元前1802年——约公元前1786年在位。
  • 天弘科技天弘科技(Celestica)是一所从事电子专业制造服务(EMS)的加拿大跨国公司,总部位于多伦多。它在美洲、欧洲和亚洲的11个国家设立了20多个办事点。天弘科技的多伦多总部最初是IBM的
  • 法绍达事件法绍达事件(Fashoda Incident),或译法硕达事件,是发生于1898年在英国和法国之间,东非的帝国主义殖民地争夺的最高潮。两国陷入了国际争端,但最终以英国的外交胜利告终。这使得法国
  • TAS2R43· motile cilium 味觉感受器,类型2,成员43,TAS2R43 是一个人类基因组中基因编码的蛋白质,是苦味味觉感受器的一员。