等价类

✍ dations ◷ 2025-04-26 12:18:49 #数学关系

在数学中,假设在一个集合 X {\displaystyle X} 上定义一个等价关系(用 {\displaystyle \sim } 来表示),则 X {\displaystyle X} 中的某个元素 a {\displaystyle a} 的等价类就是在 X {\displaystyle X} 中等价于 a {\displaystyle a} 的所有元素所形成的子集:

等价类的概念有助于从已经构造了的集合构造新集合。在 X {\displaystyle X} 中的给定等价关系 {\displaystyle \sim } 的所有等价类的集合表示为 X / {\displaystyle X/\mathrm {\sim } } 并叫做 X {\displaystyle X} 除以 {\displaystyle \sim } 的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果 X {\displaystyle X} 是有限的并且等价类都是等势的,则 X / {\displaystyle X/\mathrm {\sim } } 的序是 X {\displaystyle X} 的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合 X {\displaystyle X}

对于任何等价关系,都有从 X {\displaystyle X} X / {\displaystyle X/\mathrm {\sim } } 的一个规范投影映射 π {\displaystyle \pi } ,给出为 π ( x ) = {\displaystyle \pi (x)=} 。这个映射总是满射的。在 X {\displaystyle X} 有某种额外结构的情况下,考虑保持这个结构的等价关系,接着称这个结构是良好定义的,而商集在自然方式下继承了这个结构而成为同一个范畴的对象;从 a {\displaystyle a} {\displaystyle } 的映射则是在这个范畴内的满态射。参见同余关系。

因为等价关系的 a {\displaystyle a} {\displaystyle } 中和任何两个等价类要么相等要么不相交的性质。得出X的所有等价类的集合形成 X {\displaystyle X} 的划分:所有 X {\displaystyle X} 的元素属于一且唯一的等价类。反过来, X {\displaystyle X} 的所有划分也定义了在 X {\displaystyle X} 上等价关系。

它还得出等价关系的性质

如果 {\displaystyle \sim } 是在 X {\displaystyle X} 上的等价关系,而 P ( x ) {\displaystyle P(x)} x {\displaystyle x} 的元素的一个性质,使得只要 x y , P ( x ) {\displaystyle x\sim y,P(x)} 为真如果 P ( y ) {\displaystyle P(y)} 为真,则性质 P {\displaystyle P} 被称为良好定义的或在关系 {\displaystyle \sim } 下“类恒定”的。常见特殊情况出现在 f {\displaystyle f} 是从 X {\displaystyle X} 到另一个集合 Y {\displaystyle Y} 的时候;如果 x 1 x 2 {\displaystyle x_{1}\sim x_{2}} 蕴涵 f ( x 1 ) = f ( x 2 ) {\displaystyle f(x_{1})=f(x_{2})} f {\displaystyle f} 被称为在 {\displaystyle \sim } 下恒定的类,或简单称为在 {\displaystyle \sim } 下恒定。这出现在有限群的特征理论中。对函数 f {\displaystyle f} 的后者情况可以被表达为交换三角关系.参见不变量。

相关

  • 约翰威立约翰威立(英语:John Wiley & Sons, Inc.,简称威立、Wiley)(NYSE:JWA)是一个世界性的出版社,专注在学术出版,且出版品主要客户是专业人士、消费者、高等教育学生与教职员。约翰威立
  • 让-弗朗索瓦·利奥塔让-弗朗索瓦·利奥塔(法语:Jean-François Lyotard,1924-1998)是法国哲学家、社会学家和文学理论家。他的跨学科著述涵盖了认识论和传播学、人体、现代艺术和后现代艺术、文学和
  • 俄勒冈条约俄勒冈条约(英语:Oregon Treaty)是英国和美国于1846年7月15日在华盛顿哥伦比亚特区签署的条约。该条约结束了长久以来美国和英属北美在如今美加边境西部的边境争议。1818年条约
  • 女儿红花雕,指绍兴酒中品质上等的一类加饭酒,主要产自浙江绍兴一带。用优质的糯米,上好的酒曲加上当地的泉水,按古法酿制再窖藏数年而成,品质较一般的绍兴酒更好。花雕酒酒性柔和,酒色橙
  • 民权民权可以指:
  • 太平洋黄金水母太平洋黄金水母(学名:Chrysaora fuscescens),又名太平洋海刺水母、太平洋海荨麻,是黄金水母属下的一种水母,分布于加拿大到墨西哥西部沿海。它因颜色金黄而得名。由于色泽艳丽且对
  • 次异名异名(英语:synonyms)或称同物异名,在生物分类学上,是表示用来指称同一分类单元(taxon)的不同命名,此用词在动物学与植物学上的用法不甚相同。在动物命名上,异名是指用来表示同一个分
  • 二肽基肽酶-41J2E, 1N1M, 1NU6, 1NU8, 1PFQ, 1R9M, 1R9N, 1RWQ, 1TK3, 1TKR, 1U8E, 1W1I, 1WCY, 1X70, 2AJL, 2BGN, 2BGR, 2BUB, 2FJP, 2G5P, 2G5T, 2G63, 2HHA, 2I03, 2I78, 2IIT, 2IIV
  • 二硫代磷酸镁二硫代磷酸镁是一种无机化合物,化学式为Mg3(PS2O2)2。该化合物可由五硫化二磷和氧化镁的悬浊液在0℃时反应得到:
  • 斯库拉斯库拉(Scylla /ˈsɪlə/, 或者称为Skylla,在希腊语中称为 Σκύλλα,来自于希腊语动词σκύλλω“撕碎、扯破”),是希腊神话中吞吃水手的女海妖。她的身体有六个头十二只