互易定理

✍ dations ◷ 2025-05-19 14:58:51 #电磁学,电动力学,物理定理

在电磁学中,互易定理是电磁场理论的重要定理。由洛伦兹首先发现了一个定义在闭合曲面上的电磁场公式。后来Rayleigh-Carson又进一步把定理发展称为我们今天看到的形式,定义在一个体积分上。

假定有电磁场 {\displaystyle } 和电磁场 {\displaystyle } 都是由曲面内的电流元产生的辐射场。这里假定计算是在频域或者傅里叶变换域。我们在电磁场公式中省写了 ω {\displaystyle \omega }

洛伦兹发现如下形式的互易定理

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 E 2 × H 1 ) d A = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}-\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} =0}

注意:上面强调两个电磁场都是辐射场,其实是说这两个场都必须是滞后波。如果其中一个是超前波,一个是滞后波上述曲面积分不为零。

假设 {\displaystyle } 的电流元为: J 1 {\displaystyle \mathbf {J} _{1}} 假设 {\displaystyle } 的电流元为: J 2 {\displaystyle \mathbf {J} _{2}}

Rayleigh-Carson的贡献为,

V 1 ( E 2 J 1 ) d V = V 2 ( E 1 J 2 ) d V {\displaystyle \int _{V1}(\mathbf {E} _{2}\cdot \mathbf {J} _{1})dV=\int _{V2}(\mathbf {E} _{1}\cdot \mathbf {J} _{2})dV}

上面公式反映在电路理论中就为,

V 2 I 1 = V 1 I 2 {\displaystyle \mathbf {V} _{2}\cdot \mathbf {I} _{1}=\mathbf {V} _{1}\cdot \mathbf {I} _{2}}

其中 V 2 {\displaystyle \mathbf {V} _{2}} 是电流 I 2 {\displaystyle \mathbf {I} _{2}} 在电流 I 1 {\displaystyle \mathbf {I} _{1}} 处产生的电动势。测量 V 2 {\displaystyle \mathbf {V} _{2}} 时可将电流元 I 1 {\displaystyle \mathbf {I} _{1}} 处电路开路。 V 1 {\displaystyle \mathbf {V} _{1}} 是电流 I 1 {\displaystyle \mathbf {I} _{1}} 在电流 I 2 {\displaystyle \mathbf {I} _{2}} 处产生的电动势。测量 V 1 {\displaystyle \mathbf {V} _{1}} 时可将电流元 I 2 {\displaystyle \mathbf {I} _{2}} 处电路开路。

今天我们把如下一般形式的互易定量称为洛伦兹互易定理,

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 E 2 × H 1 ) d A {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}-\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} }

= V ( E 1 J 2 + E 2 J 1 ) d V d t {\displaystyle =\int _{V}(-\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt}

在上述一般形式互易定理中考虑洛伦兹的贡献即可得到Rayleigh-Carson的贡献的贡献。互易定理的一般形式也常常被称为洛伦兹互易定理。

由麦克斯韦方程可直接推导互易定理。但是因为这样的推导比较繁琐,也不能体现电磁场定理之间的关系。此处用另一种思路来推导互易定理。从麦克斯韦方程出发可以推导坡印亭定理,坡印亭定理可以推导互能定理。麦克斯韦方程可以推导共轭变化,互能定理同共轭变换可以推导洛伦兹互易定理。

电磁场共轭变换 R {\displaystyle \mathbf {R} } 在时域定义如下(Jin Au Kong):

R = {\displaystyle \mathbf {R} =}

在频域定义如下, R = {\displaystyle \mathbf {R} =}

其中 K {\displaystyle \mathbf {K} } 为磁流密度。共轭变换不是像傅里叶变换那样的数学变换,一个公式经过数学变换它的物理性质没有变化。共轭变换是一个物理变换。一个电磁场在共轭变换前满足麦克斯韦方程,则变换后仍满足麦克斯韦方程。共轭变换把滞后波变成超前波,把超前波变成滞后波。一个电磁场的定理经过共轭变换以后仍然是一个电磁场的定理,但是其物理性质会发生变化,因此会成为一个新的物理定理。

对互能定理两个电磁场之一,比如 E 2 , H 2 {\displaystyle \mathbf {E} _{2},\mathbf {H} _{2}} 作共轭变换可得洛伦兹互易定理。反之,对洛伦兹互易定理两个电磁场之一,比如 E 2 , H 2 {\displaystyle \mathbf {E} _{2},\mathbf {H} _{2}} 作共轭变换可得互能定理。尽管两个定理有上述紧密的联系,它们是两个完全独立的定理。洛伦兹互易定理用于处理两个电流源它们都产生滞后波的情况。互能定理用于一个源产生滞后波,另一个源产生超前波。

由此我们完成了麦克斯韦方程 到 坡印亭定理 到 互能定理 到 洛伦兹互易定理的证明。

相关

  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • HCG试验hCG试验(hCG pregnancy strip test)是利用检验人绒毛膜促性腺激素的方式,判断是否有怀孕的试验(妊娠试验) 。hCG(人绒毛膜促性腺激素)是胚胎受精后立刻就会分泌的激素,之后也会由胎
  • CTCF1X6H, 2CT1· transcription corepressor activity · protein binding · zinc ion binding · chromatin insulator sequence binding · sequence-specific DNA bind
  • 自然-结构和分子生物学《自然-结构与分子生物学》(英文:Nature Structural & Molecular Biology)是《自然》杂志的结构生物学与分子生物学分册,也是该领域经由同行评审的权威科学期刊。该杂志由自然出
  • 罗马尼亚武装部队2,187 (总计)主要国内供应商名单主要外国供应商名单罗马尼亚武装部队(罗马尼亚文称“罗马尼亚武装部队”或 “罗马尼亚军队”)是由陆军,空军与海军共同组成的罗马尼亚国家武装
  • 阿倍仲麻吕阿倍仲麻吕(日语:阿倍 仲麿/あべ の なかまろ ,698年-770年),朝臣姓,阿倍氏,原文名仲麿,又作阿部仲满,在中国时取汉名朝衡,又作晁衡、鼂衡,字巨卿。日本奈良时代的遣唐留学生之一,唐朝政
  • 胡英胡英(1934年6月19日-),化学工程学、中国物理化学家。生于上海,籍贯湖北英山。1953年毕业于华东化工学院化工机械系。华东理工大学教授。1993年当选为中国科学院院士。
  • 赛博格赛博格(英语:Cyborg),又称生化人、改造人或半机器人,是控制论有机体(cybernetic organism)的简称,是拥有有机体(organic)与生物机电一体化(biomechatronic)的生物,该词最早由曼菲德
  • 州 (奥地利)奥地利行政区划中设有9个邦,其中下奥地利、克恩滕、施蒂里亚、蒂罗尔和萨尔茨堡州自中世纪已存在,1780年代约瑟夫二世设立上奥地利州。福拉尔贝格在1861年成立前,属于蒂罗尔州
  • 疯狂店员2《疯狂店员2》(英语:)是一部于2006年上映的美国喜剧片,由凯文·史密斯执导、编剧和剪辑。本片为1994年电影《疯狂店员》的续集与View Askew宇宙的第六部电影;与第一集的黑白画面