互易定理

✍ dations ◷ 2025-04-04 11:26:01 #电磁学,电动力学,物理定理

在电磁学中,互易定理是电磁场理论的重要定理。由洛伦兹首先发现了一个定义在闭合曲面上的电磁场公式。后来Rayleigh-Carson又进一步把定理发展称为我们今天看到的形式,定义在一个体积分上。

假定有电磁场 {\displaystyle } 和电磁场 {\displaystyle } 都是由曲面内的电流元产生的辐射场。这里假定计算是在频域或者傅里叶变换域。我们在电磁场公式中省写了 ω {\displaystyle \omega }

洛伦兹发现如下形式的互易定理

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 E 2 × H 1 ) d A = 0 {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}-\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} =0}

注意:上面强调两个电磁场都是辐射场,其实是说这两个场都必须是滞后波。如果其中一个是超前波,一个是滞后波上述曲面积分不为零。

假设 {\displaystyle } 的电流元为: J 1 {\displaystyle \mathbf {J} _{1}} 假设 {\displaystyle } 的电流元为: J 2 {\displaystyle \mathbf {J} _{2}}

Rayleigh-Carson的贡献为,

V 1 ( E 2 J 1 ) d V = V 2 ( E 1 J 2 ) d V {\displaystyle \int _{V1}(\mathbf {E} _{2}\cdot \mathbf {J} _{1})dV=\int _{V2}(\mathbf {E} _{1}\cdot \mathbf {J} _{2})dV}

上面公式反映在电路理论中就为,

V 2 I 1 = V 1 I 2 {\displaystyle \mathbf {V} _{2}\cdot \mathbf {I} _{1}=\mathbf {V} _{1}\cdot \mathbf {I} _{2}}

其中 V 2 {\displaystyle \mathbf {V} _{2}} 是电流 I 2 {\displaystyle \mathbf {I} _{2}} 在电流 I 1 {\displaystyle \mathbf {I} _{1}} 处产生的电动势。测量 V 2 {\displaystyle \mathbf {V} _{2}} 时可将电流元 I 1 {\displaystyle \mathbf {I} _{1}} 处电路开路。 V 1 {\displaystyle \mathbf {V} _{1}} 是电流 I 1 {\displaystyle \mathbf {I} _{1}} 在电流 I 2 {\displaystyle \mathbf {I} _{2}} 处产生的电动势。测量 V 1 {\displaystyle \mathbf {V} _{1}} 时可将电流元 I 2 {\displaystyle \mathbf {I} _{2}} 处电路开路。

今天我们把如下一般形式的互易定量称为洛伦兹互易定理,

{\displaystyle \oiint } \oiint V {\displaystyle \scriptstyle \partial V} ( E 1 × H 2 E 2 × H 1 ) d A {\displaystyle (\mathbf {E} _{1}\times \mathbf {H} _{2}-\mathbf {E} _{2}\times \mathbf {H} _{1})\cdot d\mathbf {A} }

= V ( E 1 J 2 + E 2 J 1 ) d V d t {\displaystyle =\int _{V}(-\mathbf {E} _{1}\cdot \mathbf {J} _{2}+\mathbf {E} _{2}\cdot \mathbf {J} _{1})dVdt}

在上述一般形式互易定理中考虑洛伦兹的贡献即可得到Rayleigh-Carson的贡献的贡献。互易定理的一般形式也常常被称为洛伦兹互易定理。

由麦克斯韦方程可直接推导互易定理。但是因为这样的推导比较繁琐,也不能体现电磁场定理之间的关系。此处用另一种思路来推导互易定理。从麦克斯韦方程出发可以推导坡印亭定理,坡印亭定理可以推导互能定理。麦克斯韦方程可以推导共轭变化,互能定理同共轭变换可以推导洛伦兹互易定理。

电磁场共轭变换 R {\displaystyle \mathbf {R} } 在时域定义如下(Jin Au Kong):

R = {\displaystyle \mathbf {R} =}

在频域定义如下, R = {\displaystyle \mathbf {R} =}

其中 K {\displaystyle \mathbf {K} } 为磁流密度。共轭变换不是像傅里叶变换那样的数学变换,一个公式经过数学变换它的物理性质没有变化。共轭变换是一个物理变换。一个电磁场在共轭变换前满足麦克斯韦方程,则变换后仍满足麦克斯韦方程。共轭变换把滞后波变成超前波,把超前波变成滞后波。一个电磁场的定理经过共轭变换以后仍然是一个电磁场的定理,但是其物理性质会发生变化,因此会成为一个新的物理定理。

对互能定理两个电磁场之一,比如 E 2 , H 2 {\displaystyle \mathbf {E} _{2},\mathbf {H} _{2}} 作共轭变换可得洛伦兹互易定理。反之,对洛伦兹互易定理两个电磁场之一,比如 E 2 , H 2 {\displaystyle \mathbf {E} _{2},\mathbf {H} _{2}} 作共轭变换可得互能定理。尽管两个定理有上述紧密的联系,它们是两个完全独立的定理。洛伦兹互易定理用于处理两个电流源它们都产生滞后波的情况。互能定理用于一个源产生滞后波,另一个源产生超前波。

由此我们完成了麦克斯韦方程 到 坡印亭定理 到 互能定理 到 洛伦兹互易定理的证明。

相关

  • 核磁共振核磁共振(NMR,Nuclear Magnetic Resonance)是基于原子尺度的量子磁物理性质。具有奇数质子或中子的核子,具有内在的性质:核自旋,自旋角动量。核自旋产生磁矩。NMR观测原子的方法,是
  • 郑氏郑姓为一个汉姓,在中国《百家姓》中排第7位。按照人数来算,现今在中国大陆排名第23位,在台湾排名第12位。目前已知的郑姓家谱,明代以前的都未能保存下来,能够见到的多是清代和民
  • 毒肽毒肽(英语:Phallotoxins)是一类从毒鹅膏分离出来的双环多肽,含有七个氨基酸,目前已发现七种毒肽。其中,鬼笔环肽于1937年由海因里希·奥托·威兰的学生和女婿费奥多尔·吕嫩,以及慕
  • 美国疾控中心美国疾病控制与预防中心(英语:Centers for Disease Control and Prevention,缩写为CDC)是美国卫生与公众服务部所属的一个机构,总部设在乔治亚州亚特兰大。作为美国联邦政府行政
  • 竹中直人竹中直人(1956年3月20日-),日本知名导演、编剧、歌手、男演员,同时亦是多摩美术大学美术学部客员教授。于神奈川县横滨市金泽区富冈出生,身高168cm,血型A型,妻子为歌手木之内みどり
  • P5+1伊朗核问题六国,又称P5+1,是六个世界性大国在2006年围绕解决伊朗核问题而组建的国家集团,包括联合国安全理事会五个常任理事国,即中华人民共和国、法国、俄罗斯、英国、美国,再加
  • 塞索托语塞索托语(塞索托语:Sesotho)是南非11种官方语言之一,还是莱索托的国语,属于班图语支。它是一种黏着语,用许多的词缀、派生词以及屈折变化来构成句子。这种语言有39个辅音,9个元音。
  • 维新三杰维新三杰是指日本明治维新时期的三位维新派代表人物。他们是:维新派以尊皇攘夷口号推翻幕府后,建立起新的君主立宪体制,实行三权分立,选举官吏。木户孝允首先担任明治政府的实质
  • 埃塞尔·史密斯埃塞尔·玛丽·史密斯女爵士,DBE(英语:Dame Ethel Mary Smyth,1858年4月23日-1944年5月8日)是一位英国作曲家和争取女性参政权运动的成员之一。史密斯出生于伦敦,是家里八个孩子中
  • X射线双星X射线双星是一类发出明亮X射线辐射的双星,双星系统中有一颗为致密星,通常为中子星或黑洞。它们的典型光度在1036-1038尔格/秒之间,比太阳全波段的光度高3到5个数量级。X射线双星