<style data-mw-deduplicate="TemplateStyles:r58896141">'"`UNIQ--templatest

✍ dations ◷ 2025-06-29 17:34:55 #数论,数学分析

p进数分析是研究变量为p进数的函数之分析性质的数学分支,属于数论研究中的领域。

p进数域是有理数域装备了与欧几里德范数不同的p进范数后进行拓扑完备化得到的完备数域,一般记作 Q p {\displaystyle \mathbb {Q} _{p}} +1 - 趋于0。因此数列有极限等价于说其相邻项之差趋于0:88。无穷级数 n N a n {\displaystyle \sum _{n\in \mathbb {N} }a_{n}} ,所以无穷级数收敛当且仅当其通项趋于0:89。

Z p {\displaystyle \mathbb {Z} _{p}} 表示所有p进整数,即在p进范数小于等于1的p进数的集合。由于 Q p {\displaystyle \mathbb {Q} _{p}} 是完全不连通的空间,不具有与实数中“区间”对应的研究对象,因此较常作为研究基础的是其中的球:92。 Z p {\displaystyle \mathbb {Z} _{p}} 是一个紧致的球。与 Q p {\displaystyle \mathbb {Q} _{p}} 中的任何球一样, Z p {\displaystyle \mathbb {Z} _{p}} 是开集也是闭集。由 Q p {\displaystyle \mathbb {Q} _{p}} 的超度量特性可以推出, Q p {\displaystyle \mathbb {Q} _{p}} 可以划分为形同 x + Z p {\displaystyle x+\mathbb {Z} _{p}} 的球的不交并集,其中的x是 Q p / Z p {\displaystyle \mathbb {Q} _{p}/\mathbb {Z} _{p}} Z / Z {\displaystyle \mathbb {Z} \left/\mathbb {Z} } 的代表元素。因此要研究 Q p {\displaystyle \mathbb {Q} _{p}} 上的函数,可以转化为研究 Z p {\displaystyle \mathbb {Z} _{p}} 上的函数:160。

Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数定义与实数中的定义一致。适用于所有度量空间的连续性基本性质在 Z p {\displaystyle \mathbb {Z} _{p}} 上也适用,例如在紧集上处处连续的函数绝对连续:93。

在实分析与复分析中,魏尔斯特拉斯逼近定理说明了,闭区间上的实值或复值连续函数能够被多项式函数一致逼近,然而统一而具体的逼近多项式函数是不存在的:160。在p进数分析中,马勒定理说明了 Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数(取值在 Q p {\displaystyle \mathbb {Q} _{p}} C p {\displaystyle \mathbb {C} _{p}} 上)能够被多项式函数一致逼近,而且这些多项式函数有统一的显式表达(其系数都是只和函数本身相关的常数):173。范德普特定理说明, Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数都能够被 Z p {\displaystyle \mathbb {Z} _{p}} 上的球指示函数(即只在球 i + p j Z p {\displaystyle i+p^{j}\mathbb {Z} _{p}} 上取值为1,其余时候取值为0的函数)的线性组合一致逼近,而且给出了具体的系数:182-183。

Z p {\displaystyle \mathbb {Z} _{p}} 上的函数也可以定义导数,就像实分析中一样:给定开集U,考察函数 f : U Q p {\displaystyle f:\;U\rightarrow \mathbb {Q} _{p}} 。对U中一点x,如果极限:

存在,就称函数f在点x可导,导数为上述极限f '(x)。这样定义的导数和导函数与它们在实分析中对应的对象拥有某些共同点。比如可导的函数总是连续函数。不过,由于“区间”概念的缺失, Q p {\displaystyle \mathbb {Q} _{p}} 上无法建立对应于实分析中中值定理的结论。没有“中值定理”,“传统的”导数在p进分析中无法拥有很多在实分析中有重要价值的性质。比如,存在一个处处可导,导函数恒等于零的函数,它自身并不是常数函数:93-94。

相关

  • 炭疽杆菌炭疽杆菌是一种棒状的革兰氏阳性菌,长约1至6微米,这种细菌通常以内孢子之型态出现在土壤中,并可借此状态存活数十年之久,一旦由牲畜摄入,孢子便开始在动物体内大量复制,最后造成死
  • 人机交互人机互动(英语:human–computer interaction,缩写:HCI,或 human–machine interaction,缩写:HMI),是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算
  • SV40SV40全名猿猴空泡病毒40(Simian vacuolating virus 40)或猿猴病毒40(Simian virus 40),是一种多瘤病毒,也是一种DNA病毒,有造成肿瘤发生的潜在能力,不过通常会维持于潜伏感染(latent
  • C·S·路易斯克利夫·斯特普尔斯·刘易斯(英语:Clive Staples Lewis,1898年11月29日-1963年11月22日),通称C·S·刘易斯(C.S. Lewis)或 鲁益师,其朋友及家人昵称他为杰克(Jack),出生于北爱尔兰首府贝
  • 不当对立不当对立或无端对立(unwarranted contrast)是一种形式谬误,无来由地推定对立事物存在。形式逻辑上,是将特称肯定型(I型)或特称否定型(O型)之直言命题做形式互换。形式:范例:可能所有的
  • 乙烯/醋酸乙烯酯共聚物乙烯/醋酸乙烯酯共聚物(又称乙烯/乙酸乙烯酯共聚物),是由乙烯(E)和乙酸乙烯酯(VA)共聚而制成,英文名称为:Ethylene Vinyl Acetate,简称为EVA,或E/VAC。乙烯/醋酸乙烯酯共聚物的特点是具有
  • 仇恨犯罪法律仇恨罪行(英语:Hate crime)源于保护特定少数群体的意识形态,指的是由针对某一特定社会群组的歧视性犯罪行为。这些社会群组包括种族、宗教、性倾向、身心障碍、族群、国籍、年龄
  • 宜春郡宜春郡,中国隋朝时设置的郡。隋炀帝大业三年(607年),实行郡制,改袁州为宜春郡,治所在宜春县(今宜春市袁州区),相当于现在江西省宜春市、萍乡市、新余市。唐高祖武德五年(622年),唐朝灭林
  • 迷路园迷路园又称迷宫,是一个设计来让人们作消闲用的游戏,人们通过寻找出路而获得乐趣。迷路园的路径是固定的,有一种迷路园会使用多个门户连结多个房间,让人们需要在多个门户里作出选
  • Lon蛋白酶家族结构 / ECOD结构 / ECOD在分子生物学中,Lon蛋白酶家族是一个依赖ATP的丝氨酸蛋白酶家族,在细菌、古菌以及真核生物中都有发现。在真核生物中,大部分的Lon蛋白酶都定位于线粒体