<style data-mw-deduplicate="TemplateStyles:r58896141">'"`UNIQ--templatest

✍ dations ◷ 2025-04-04 11:05:20 #数论,数学分析

p进数分析是研究变量为p进数的函数之分析性质的数学分支,属于数论研究中的领域。

p进数域是有理数域装备了与欧几里德范数不同的p进范数后进行拓扑完备化得到的完备数域,一般记作 Q p {\displaystyle \mathbb {Q} _{p}} +1 - 趋于0。因此数列有极限等价于说其相邻项之差趋于0:88。无穷级数 n N a n {\displaystyle \sum _{n\in \mathbb {N} }a_{n}} ,所以无穷级数收敛当且仅当其通项趋于0:89。

Z p {\displaystyle \mathbb {Z} _{p}} 表示所有p进整数,即在p进范数小于等于1的p进数的集合。由于 Q p {\displaystyle \mathbb {Q} _{p}} 是完全不连通的空间,不具有与实数中“区间”对应的研究对象,因此较常作为研究基础的是其中的球:92。 Z p {\displaystyle \mathbb {Z} _{p}} 是一个紧致的球。与 Q p {\displaystyle \mathbb {Q} _{p}} 中的任何球一样, Z p {\displaystyle \mathbb {Z} _{p}} 是开集也是闭集。由 Q p {\displaystyle \mathbb {Q} _{p}} 的超度量特性可以推出, Q p {\displaystyle \mathbb {Q} _{p}} 可以划分为形同 x + Z p {\displaystyle x+\mathbb {Z} _{p}} 的球的不交并集,其中的x是 Q p / Z p {\displaystyle \mathbb {Q} _{p}/\mathbb {Z} _{p}} Z / Z {\displaystyle \mathbb {Z} \left/\mathbb {Z} } 的代表元素。因此要研究 Q p {\displaystyle \mathbb {Q} _{p}} 上的函数,可以转化为研究 Z p {\displaystyle \mathbb {Z} _{p}} 上的函数:160。

Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数定义与实数中的定义一致。适用于所有度量空间的连续性基本性质在 Z p {\displaystyle \mathbb {Z} _{p}} 上也适用,例如在紧集上处处连续的函数绝对连续:93。

在实分析与复分析中,魏尔斯特拉斯逼近定理说明了,闭区间上的实值或复值连续函数能够被多项式函数一致逼近,然而统一而具体的逼近多项式函数是不存在的:160。在p进数分析中,马勒定理说明了 Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数(取值在 Q p {\displaystyle \mathbb {Q} _{p}} C p {\displaystyle \mathbb {C} _{p}} 上)能够被多项式函数一致逼近,而且这些多项式函数有统一的显式表达(其系数都是只和函数本身相关的常数):173。范德普特定理说明, Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数都能够被 Z p {\displaystyle \mathbb {Z} _{p}} 上的球指示函数(即只在球 i + p j Z p {\displaystyle i+p^{j}\mathbb {Z} _{p}} 上取值为1,其余时候取值为0的函数)的线性组合一致逼近,而且给出了具体的系数:182-183。

Z p {\displaystyle \mathbb {Z} _{p}} 上的函数也可以定义导数,就像实分析中一样:给定开集U,考察函数 f : U Q p {\displaystyle f:\;U\rightarrow \mathbb {Q} _{p}} 。对U中一点x,如果极限:

存在,就称函数f在点x可导,导数为上述极限f '(x)。这样定义的导数和导函数与它们在实分析中对应的对象拥有某些共同点。比如可导的函数总是连续函数。不过,由于“区间”概念的缺失, Q p {\displaystyle \mathbb {Q} _{p}} 上无法建立对应于实分析中中值定理的结论。没有“中值定理”,“传统的”导数在p进分析中无法拥有很多在实分析中有重要价值的性质。比如,存在一个处处可导,导函数恒等于零的函数,它自身并不是常数函数:93-94。

相关

  • 构象构象异构(英语:Conformational isomerism,又译结构异构或构形异构,指由于原子环绕于化学键四周,而导致结构式相同,却具有化学构象或构象异构体之差异的分子现象。有三种效应,会使某
  • 亨利·莫塞莱亨利·格温·杰弗里·莫塞莱(英语:Henry Gwyn Jeffreys Moseley,1887年11月23日-1915年8月),英国物理学家和化学家。莫塞莱对物理学和化学做出的最重大的贡献就是打破先前物理学理
  • 囊肿纤维症囊肿性纤维化(英语:cystic fibrosis,缩写作 CF),亦称为囊性纤维化、囊肿性纤维变性、囊肿纤维症、纤维性囊肿或囊纤维变性,是一种常见的遗传疾病,此病症最常影响肺脏,但也常发生于胰
  • 遥控器遥控是指一种远程控制技术,用来遥控机械的装置称为遥控器。现代的遥控器,主要是由集成电路电板和用来产生不同讯息的按钮所组成。遥控技术在工业生产、军事以及科研上均有着大
  • 噻丁环Trimethylene sulfide噻丁环(Thietane)是一种含硫的四元杂环化合物,化学式C3H6S。噻丁环可由碳酸丙二酯与硫氰化钾反应制得,该法产量不高:一个改进的方法是1,3-二溴丙烷与硫化钠
  • 甲龙亚目甲龙亚目(学名:Ankylosauria,意为“僵硬蜥蜴”)是属于鸟臀目的一个演化支。甲龙亚目包含了大部分有着骨鳞片形式装甲的恐龙。甲龙亚目都是有着短而壮的腿的笨重四足动物。甲龙亚
  • 客家裔台湾人本文属于客家系列的一部分台湾客家人,是指具有汉族客家民系认同的台湾人,为台湾第二大族群。其母语为台湾客家话,历经早期、明郑时期、清治时期皆能通行于台湾的客家地区,在日治
  • 伍尔芙弗吉尼亚·伍尔夫(英语:Virginia Woolf;1882年1月25日-1941年3月28日),英国作家,被誉为二十世纪现代主义与女性主义的先锋。在一战与二战的战间期,她是伦敦文学界的核心人物,同时也是
  • 默尔特省默尔特省(法语:Département de la Meurthe)是法国历史上的一个省份,以默尔特河命名,成立于1790年,省会南希。1871年,德国依《法兰克福条约》吞并了阿尔萨斯的大部分与洛林的四分之
  • 和平号对接舱和平号对接舱(简称:对接舱,俄语:стыковочный отсек, 英语:Docking compartment),GRAU代号316GK,是和平号空间站的第6个模块。1995年11月12日搭乘亚特兰提斯号航天飞