<style data-mw-deduplicate="TemplateStyles:r58896141">'"`UNIQ--templatest

✍ dations ◷ 2025-11-18 21:04:41 #数论,数学分析

p进数分析是研究变量为p进数的函数之分析性质的数学分支,属于数论研究中的领域。

p进数域是有理数域装备了与欧几里德范数不同的p进范数后进行拓扑完备化得到的完备数域,一般记作 Q p {\displaystyle \mathbb {Q} _{p}} +1 - 趋于0。因此数列有极限等价于说其相邻项之差趋于0:88。无穷级数 n N a n {\displaystyle \sum _{n\in \mathbb {N} }a_{n}} ,所以无穷级数收敛当且仅当其通项趋于0:89。

Z p {\displaystyle \mathbb {Z} _{p}} 表示所有p进整数,即在p进范数小于等于1的p进数的集合。由于 Q p {\displaystyle \mathbb {Q} _{p}} 是完全不连通的空间,不具有与实数中“区间”对应的研究对象,因此较常作为研究基础的是其中的球:92。 Z p {\displaystyle \mathbb {Z} _{p}} 是一个紧致的球。与 Q p {\displaystyle \mathbb {Q} _{p}} 中的任何球一样, Z p {\displaystyle \mathbb {Z} _{p}} 是开集也是闭集。由 Q p {\displaystyle \mathbb {Q} _{p}} 的超度量特性可以推出, Q p {\displaystyle \mathbb {Q} _{p}} 可以划分为形同 x + Z p {\displaystyle x+\mathbb {Z} _{p}} 的球的不交并集,其中的x是 Q p / Z p {\displaystyle \mathbb {Q} _{p}/\mathbb {Z} _{p}} Z / Z {\displaystyle \mathbb {Z} \left/\mathbb {Z} } 的代表元素。因此要研究 Q p {\displaystyle \mathbb {Q} _{p}} 上的函数,可以转化为研究 Z p {\displaystyle \mathbb {Z} _{p}} 上的函数:160。

Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数定义与实数中的定义一致。适用于所有度量空间的连续性基本性质在 Z p {\displaystyle \mathbb {Z} _{p}} 上也适用,例如在紧集上处处连续的函数绝对连续:93。

在实分析与复分析中,魏尔斯特拉斯逼近定理说明了,闭区间上的实值或复值连续函数能够被多项式函数一致逼近,然而统一而具体的逼近多项式函数是不存在的:160。在p进数分析中,马勒定理说明了 Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数(取值在 Q p {\displaystyle \mathbb {Q} _{p}} C p {\displaystyle \mathbb {C} _{p}} 上)能够被多项式函数一致逼近,而且这些多项式函数有统一的显式表达(其系数都是只和函数本身相关的常数):173。范德普特定理说明, Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数都能够被 Z p {\displaystyle \mathbb {Z} _{p}} 上的球指示函数(即只在球 i + p j Z p {\displaystyle i+p^{j}\mathbb {Z} _{p}} 上取值为1,其余时候取值为0的函数)的线性组合一致逼近,而且给出了具体的系数:182-183。

Z p {\displaystyle \mathbb {Z} _{p}} 上的函数也可以定义导数,就像实分析中一样:给定开集U,考察函数 f : U Q p {\displaystyle f:\;U\rightarrow \mathbb {Q} _{p}} 。对U中一点x,如果极限:

存在,就称函数f在点x可导,导数为上述极限f '(x)。这样定义的导数和导函数与它们在实分析中对应的对象拥有某些共同点。比如可导的函数总是连续函数。不过,由于“区间”概念的缺失, Q p {\displaystyle \mathbb {Q} _{p}} 上无法建立对应于实分析中中值定理的结论。没有“中值定理”,“传统的”导数在p进分析中无法拥有很多在实分析中有重要价值的性质。比如,存在一个处处可导,导函数恒等于零的函数,它自身并不是常数函数:93-94。

相关

  • 肠道沙门氏菌肠道沙门氏菌(学名:Salmonella enterica)是一种有鞭毛的革兰氏阴性菌及沙门氏菌属的一员。肠道沙门氏菌有着极其大量的血清型:大约有2000个不同的血清型。就如伤寒杆菌(学名Salmo
  • 巴库利德斯巴库利德斯(英语:Bacchylides /bəˈkɪlᵻˌdiːz/,古希腊语:Βακχυλίδης),约活动于公元前5世纪前后。古希腊抒情诗人之一,他常于进行抒情表达。与品达齐名,他的生平事迹
  • 不定词在语法中,动词不定式(又称不定词)是动词的一种不带词形变化从而不指示人称、数量、时态的形式。它叫做不定式,是因为动词不受限定,或者说不为词形变化所局限。不定式属于非谓语动
  • 膜蛋白质膜蛋白(英语:membrane protein)是指能够结合或整合到细胞或细胞器的膜上的蛋白质的总称。而细胞中一半以上的蛋白质可以与膜以不同形式结合。根据与膜结合强度的不同,膜蛋白可以
  • 航海工程航海工程(英语:Marine engineering),包括轮机的生产、制造、使用、管理与维修等,是一个复杂的系统。船舶工程师主要关注船只整体设计以及水中推进部分。机械工程师设计主要推进部
  • 承启楼坐标:24°39′47″N 117°00′15″E / 24.66306°N 117.00417°E / 24.66306; 117.00417承启楼位于中国福建省龙岩市永定区高头乡高北村,相传建造中有感于老天相助又名天助楼,
  • FOIA《信息自由法》(Freedom of Information Act 简称FOIA,也译作情报自由法、美国信息自由法案)是美国关于联邦政府信息公开化的行政法规,颁布于1967年。《信息自由法》的主要内容
  • 立地暗沙立地暗沙是一座位于南海的暗沙,为南沙群岛的一部分,中华人民共和国、中华民国声称对其拥有主权。立地暗沙是中国领土的最南端,而不是更广为人知的曾母暗沙。周围水深25-27浔(45
  • 河马科河马科(学名:Hippopotamidae)是哺乳纲偶蹄目的一科,为大型水陆两栖的草食动物,与鲸类同属河马形亚目。现存仅有河马和倭河马两种,都生活在非洲。
  • 马塞尔·布劳耶马塞尔·拉约什·布劳耶(Marcel Lajos Breuer;/ˈbrɔɪ.ər/ ;1902年5月21日-1981年7月1日)是一位匈牙利裔现代主义设计师、建筑师,是20世纪主要的现代主义艺术家之一。马塞尔·