<style data-mw-deduplicate="TemplateStyles:r58896141">'"`UNIQ--templatest

✍ dations ◷ 2025-10-19 19:17:25 #数论,数学分析

p进数分析是研究变量为p进数的函数之分析性质的数学分支,属于数论研究中的领域。

p进数域是有理数域装备了与欧几里德范数不同的p进范数后进行拓扑完备化得到的完备数域,一般记作 Q p {\displaystyle \mathbb {Q} _{p}} +1 - 趋于0。因此数列有极限等价于说其相邻项之差趋于0:88。无穷级数 n N a n {\displaystyle \sum _{n\in \mathbb {N} }a_{n}} ,所以无穷级数收敛当且仅当其通项趋于0:89。

Z p {\displaystyle \mathbb {Z} _{p}} 表示所有p进整数,即在p进范数小于等于1的p进数的集合。由于 Q p {\displaystyle \mathbb {Q} _{p}} 是完全不连通的空间,不具有与实数中“区间”对应的研究对象,因此较常作为研究基础的是其中的球:92。 Z p {\displaystyle \mathbb {Z} _{p}} 是一个紧致的球。与 Q p {\displaystyle \mathbb {Q} _{p}} 中的任何球一样, Z p {\displaystyle \mathbb {Z} _{p}} 是开集也是闭集。由 Q p {\displaystyle \mathbb {Q} _{p}} 的超度量特性可以推出, Q p {\displaystyle \mathbb {Q} _{p}} 可以划分为形同 x + Z p {\displaystyle x+\mathbb {Z} _{p}} 的球的不交并集,其中的x是 Q p / Z p {\displaystyle \mathbb {Q} _{p}/\mathbb {Z} _{p}} Z / Z {\displaystyle \mathbb {Z} \left/\mathbb {Z} } 的代表元素。因此要研究 Q p {\displaystyle \mathbb {Q} _{p}} 上的函数,可以转化为研究 Z p {\displaystyle \mathbb {Z} _{p}} 上的函数:160。

Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数定义与实数中的定义一致。适用于所有度量空间的连续性基本性质在 Z p {\displaystyle \mathbb {Z} _{p}} 上也适用,例如在紧集上处处连续的函数绝对连续:93。

在实分析与复分析中,魏尔斯特拉斯逼近定理说明了,闭区间上的实值或复值连续函数能够被多项式函数一致逼近,然而统一而具体的逼近多项式函数是不存在的:160。在p进数分析中,马勒定理说明了 Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数(取值在 Q p {\displaystyle \mathbb {Q} _{p}} C p {\displaystyle \mathbb {C} _{p}} 上)能够被多项式函数一致逼近,而且这些多项式函数有统一的显式表达(其系数都是只和函数本身相关的常数):173。范德普特定理说明, Z p {\displaystyle \mathbb {Z} _{p}} 上的连续函数都能够被 Z p {\displaystyle \mathbb {Z} _{p}} 上的球指示函数(即只在球 i + p j Z p {\displaystyle i+p^{j}\mathbb {Z} _{p}} 上取值为1,其余时候取值为0的函数)的线性组合一致逼近,而且给出了具体的系数:182-183。

Z p {\displaystyle \mathbb {Z} _{p}} 上的函数也可以定义导数,就像实分析中一样:给定开集U,考察函数 f : U Q p {\displaystyle f:\;U\rightarrow \mathbb {Q} _{p}} 。对U中一点x,如果极限:

存在,就称函数f在点x可导,导数为上述极限f '(x)。这样定义的导数和导函数与它们在实分析中对应的对象拥有某些共同点。比如可导的函数总是连续函数。不过,由于“区间”概念的缺失, Q p {\displaystyle \mathbb {Q} _{p}} 上无法建立对应于实分析中中值定理的结论。没有“中值定理”,“传统的”导数在p进分析中无法拥有很多在实分析中有重要价值的性质。比如,存在一个处处可导,导函数恒等于零的函数,它自身并不是常数函数:93-94。

相关

  • 孕产次数孕产次数(gravidity and parity)是生物学及医学中有关妊娠的数字,孕产次数包括孕次(gravidity)及产次(parity),孕次是指怀孕次数,产次则是胎儿到可存活胎龄(viable gestational age)的
  • 蒙特塞拉多县蒙特塞拉多县是是利比里亚15县之一,位于西非国家利比里亚的西北部。下分有4个区。本森维尔为此县首府,全县面积1,909平方公里(737平方哩),是15县中最小者。根据2008年人口普查,此
  • 划界谬误连续体谬误(英语:continuum fallacy),又称划界谬误(英语:line drawing fallacy)、秃子谬误(英语:bald man fallacy)、灰色地带谬误(英语:fallacy of grey)、堆垛悖论(英语:sorites paradox),
  • 塔斯马尼亚岛坐标:42°10′46.88″S 146°38′43.83″E / 42.1796889°S 146.6455083°E / -42.1796889; 146.6455083塔斯马尼亚州(英语:Tasmania,缩写为TAS),简称塔州,是澳大利亚唯一的岛州,原
  • 波函数坍缩波函数坍缩(wave function collapse)指的是某些量子力学体系与外界发生某些作用后波函数发生突变,变为其中一个本征态或有限个具有相同本征值的本征态的线性组合的现象。波函数
  • 1124年重要事件及趋势重要人物
  • 横裂甲藻纲横裂甲藻纲(Dinophyceae)为藻类植物之一植物纲。该植物于植物分类表上,归于甲藻门 (Pyrrophyta),该植物纲辖下有多甲藻目(Peridi-niales) 、变形甲藻目(Dinamoebidiales)等等植物目。
  • 澳门海关中华人民共和国澳门特别行政区海关(葡萄牙语:Serviços de Alfândega da Região Administrativa Especial de Macau da República Popular da China)是澳门特别行政区政府部
  • 同帅战役美国等国正式介入之后美国撤出至南越灭亡同帅战役,(越南语:Trận Đồng Xoài,英语:Battle of Dong Xoai)是越南战争早期的一场战斗。最终战斗以越共胜利而告终。
  • 美国运输部美国运输部(英语:United States Department of Transportation,简称DoT,又译美国交通部)是美国联邦政府的交通行政部门。1966年10月15日,美国国会通过设立运输部法案。1967年4月1