首页 >
卢瑟福模型
✍ dations ◷ 2025-12-01 10:47:00 #卢瑟福模型
卢瑟福模型(Rutherford model)是英国物理大师欧内斯特·卢瑟福创立的原子模型。1909年,卢瑟福领导设计与完成卢瑟福散射实验,其证实了在原子中心部分有一个带正电、带质量的原子核,因此约瑟夫·汤姆孙主张的梅子布丁模型被彻底推翻。卢瑟福根据他的实验结果设计出一种新模型,称为“卢瑟福模型”,其拥有几个重要的特色:大多数的质量和正电荷,都集中于位于中心区域、半径极小的原子核,而电子则环绕在原子核的外面。卢瑟福模型是一种核子模型,在卢瑟福散射实验里,主角是原子核,而电子并不重要,因此卢瑟福不能空口无凭地给出电子的排列方式,也无法用这模型对于化学结合、元素列表、原子谱线给出解释。:51-53:14卢瑟福散射实验使用阿尔法粒子来探测原子的结构。1909年,在恩师卢瑟福的指导下,汉斯·盖革和欧内斯特·马斯登发射阿尔法粒子射束于白金箔纸。在那时代,原子被认为类比于梅子布丁(物理学家汤姆孙提出的),负电荷(梅子)分散于正电荷的圆球(布丁)。假若这梅子布丁模型是正确的,由于正电荷完全散开,而不是集中于一个原子核,库仑位势的变化不会很大,通过这位势的阿尔法粒子,其移动方向应该只会有小角度偏差。:51-53然而,他们得到的实验结果非常诡异,大约每8000个阿尔法粒子,就有一个粒子的移动方向会有很大角度的偏差(超过90°);而其它粒子都直直地冲过白金箔纸,没有任何偏差。从这结果,卢瑟福断定,大多数的质量和正电荷,都集中于一个很小的区域(原子核);电子则包围在区域的外面。当一个(正价)阿尔法粒子移动到非常接近原子核,它会被很强烈的排斥,以大角度反弹。原子核的小尺寸解释了为什么只有少数的阿尔法粒子被这样排斥。从纯属对称性和审美性的观点,这个质量与电荷集中的区域,应该处于原子中心。:51-531911年,卢瑟福提出他自己的物理模型,诠释这些突如其来的答案。原子,是由一个带正电荷的中心区域(这就是现代的原子核,虽然卢瑟福没有想到这术语),和环绕在这区域外面的电子云,所构成的。:51-53:51-53从能量守恒定律,卢瑟福推理,知道阿尔法粒子的速度,就可以知道阿尔法粒子的撞击能够达到与原子核的最小距离。稍加计算,他得到金原子的原子核半径必小于
3.4
×
10
−
14
m
{displaystyle 3.4times 10^{-14} m,!}
(真实值只是这数值的五分之一)。金原子的半径大约是
10
−
10
m
{displaystyle 10^{-10} m,!}
。这是一个令人惊讶的结果,所有的正电荷都聚集于原子中心一个很小区域,其半径小于三千分之一原子半径!卢瑟福模型并没有给予电子的环绕运动任何结构。卢瑟福在1911年论文里,提到了长冈半太郎的半太郎模型(英语:Nagaoka model)。长冈半太郎建议电子的轨道就像土星环,这是从詹姆斯·麦克斯韦的土星环稳定理论获得的灵感。:22-23卢瑟福更进一步地建议原子中间的单位电荷数目可能与其原子量成比例(大约一半)。那时,金的原子量估计为 197 amu。所以,卢瑟福猜想单位电荷数目是98个单位电荷左右。这数子与金原子的原子序79(那个年代,在周期表的位置次序)相差甚远,卢瑟福并没有正式地建议两个数量可能完全一样。很快地,学者们发觉卢瑟福模型,虽然拥有一些引人欣赏的性质,但也引起一个很严重的问题。由于卢瑟福不能空口无凭地给出电子的排列方式,也无法用这模型对于化学结合、元素列表、原子谱线给出解释。为了解决这问题,必须弥补卢瑟福模型的不足,因此,尼尔斯·玻尔认为必须明确设计出电子的轨域运动规则,他发表了玻尔模型。不久以后,卢瑟福模型就被更为先进的玻尔模型取代了。这模型引用了一些早期量子力学的实验结果来设定电子的物理行为,限制电子的轨道为平面的圆形轨道。将亨利·莫塞莱的研究结果加以延伸,玻尔认为,原子核的单位电荷数目与原子序有直接的关系。:53-57由于玻尔模型是卢瑟福模型的改良,有些物理学书本将两个模型合并,将玻尔模型称为“卢瑟福-玻尔模型”。
相关
- 神秘主义神秘主义(英语:Mysticism),也有较模糊的称为密契主义,包涵人类与神明或某种超自然力量结合为一的各种形式、经验、体验,并且强调这是一切宗教共有的现象。神秘主义者的基本信条是
- Micrograph显微照相是以显微镜或类似的器材所摄取的相片或影像,以显示放大了的物件影像。显微照相是由加拿大发明家范信达所发明。有制造显微照相,可以在显微镜上安装照相机,取代目镜;或是
- 颈链项链是一种戴在脖子上的绳状饰品,通常会使用金,银等贵金属制成,用宝石镶嵌其上。但有时也会使用木头、石头、贝壳、或是塑胶等不同材料。项链是一种挂在脖子上的珠宝饰品。已被
- 听觉系统听觉系统是听觉的感觉系统,主要器官为耳朵,其组成部分包括外耳(英语:Outer ear)、中耳、内耳、毛细胞及相关神经元。围绕耳道的软骨折叠位称为耳廓。当声波碰击倒耳廓,便会被反射
- 小亚细亚安纳托利亚(土耳其语:Anadolu;希腊语:ανατολή;帝国亚拉姆语:ܐܢܛܘܠܝܐ;亚美尼亚语:Անատոլիա),亦作安纳托力亚、安那托利亚,又名小亚细亚(土耳其语:Küçük Asya;英
- 互补性决定区互补性决定区(英语:Complementarity determining regions,CDRs)为抗体和T细胞受体上可变区的一部分,为抗原与抗体接触的地方。CDR为全身变异性最大的地方,以捕捉不同抗原。抗原受
- 亲电加成亲电加成反应(EA),简称亲电加成,是亲电试剂(带正电的基团)进攻不饱和键引起的加成反应。反应中,不饱和键(双键或三键)打开,并与另一个底物形成两个新的σ键。亲电加成中最常见的不饱和
- 丙酸诺龙丙酸诺龙(英语:Nandrolone propionate,或称为19-去甲睾酮-17β-丙酸酯 19-nortestosterone 17β-propionate,商品名为Anabolicus)是一种雄激素同化类固醇(AAS)药物,在西班牙有出售。
- 同染色体性别同染色体性别是指一个物种的性别中,其两条性染色体为相同的。以人为例,女性的性染色体由两条X染色体组成,为两条相同的性染色体。雌性即为同染色体性别。在部分的鸟类和爬虫类
- r̥齿龈颤音是辅音的一种类型, 在很多语言中使用,如俄语、藏语、西班牙语、亚美尼亚语和波兰语、意大利语、瑞典语、德语、阿拉伯语、挪威语、冰岛语、芬兰语、马来语、蒙古语、
