算子

✍ dations ◷ 2025-12-05 11:46:39 #代数,泛函分析,数学表示法

算子(英语:Operator)是将一个元素在向量空间(或模)中转换为另一个元素的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。

设、是两个向量空间。 从到的任意映射被称为算子。 令是域上的向量空间。我们可以定义包含所有从到算子的集合上的向量空间结构(和是算子):

对所有x {\displaystyle \in } 和K

从一个向量空间到自身的算子构成一个辛结合代数:

单位元是恒等映射(通常记为、id)。

令和是同一有序域(例如 R {\displaystyle \mathbf {R} } 到的线性算子被称为有界,如果存在满足

对所有x {\displaystyle \in }

有界算子构成一个向量空间。在这个向量空间上,我们可以引入一个与和的范数相容的范数:

对于从到自身的算子有

任何具有这一性质的辛赋范代数被称为Banach代数。 可以将谱理论推广到这样的代数上。 C*-代数是具有一些附加结构的Banach代数,在量子力学中起重要作用。

泛函是将向量空间映射到其底域的算子。 广义函数理论和变分法是泛函的重要应用。 两者对理论物理都非常重要。

线性算子是最常见的算子。设和是域上的向量空间。算子:→被称为线性,如果

对所有x、y {\displaystyle \in } {\displaystyle \in }

线性算子的重要性在于它是向量空间之间的态射。

在有限维情形下,线性算子可以以下面的方式由矩阵表示。 设 K {\displaystyle K} 和-都是可逆的(双射),但它们的和为0,不可逆。

在这样的空间上保持欧几里得度量的算子构成等度群,保持原型不变的子群被称为正交群。正交群中的保角算子构成特殊正交群。

概率论中也涉及到算子,如期望、方差、协方差、阶乘等。

从泛函分析的角度来说,微积分是研究两个线性算子:微分算子 d d t {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}} 实际上是无限维向量空间ℓ2的元素,因此傅里叶级数是线性算子。

当处理R → C的一般函数时,变换采用积分形式:

拉普拉斯变换是另一种积分算子,用于简化求解微分方程的过程。

对于 = (),拉普拉斯变换定义如下:

三个算子是向量微积分的关键:

作为从向量微积分算子到物理、工程和张量空间的延伸,梯度、散度和旋度算子也经常与张量微积分相关联。

相关

  • 抗酸药抑酸剂,又称抗酸剂,抑制胃酸分泌,缓解烧心、反酸的症状,常用的药物有H2受体阻滞剂和质子泵抑制剂PPI(奥美拉唑等)。如氢氧化铝凝胶、三硅酸镁、碳酸氢钠等至今已经出现三代,既第一
  • 琉球语琉球语(冲绳语:ルーチューグチ),又称岛言叶(しまくとぅば),属日本琉球语系,分布在冲绳县、鹿儿岛县奄美群岛,是对琉球群岛(包括奄美群岛及冲绳群岛)一系列本土语言的统称。由于各种琉球
  • 青瓜酸奶酪酱汁青瓜酸乳酪酱汁( 土耳其语:cacık .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentiu
  • 彼得·劳伦斯彼得·安东尼·劳伦斯(英语:Peter Anthony Lawrence,1941年6月23日-)是英国发育生物学家,现任剑桥大学动物学系和分子生物学实验室研究员。劳伦斯早年在西约克郡韦瑟比的温宁顿学
  • 530110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 甜菊糖苷甜菊糖(英语:Stevioside, Stevia),又称甜菊素、甜菊糖苷、甜菊萃,一种糖苷,1931年,由法国科学家从菊科草本植物甜叶菊(或称甜菊叶)中提炼出。可作为甜味剂使用,而南美洲使用甜叶菊作为
  • 刮胡刀刮胡刀,亦称为剃须刀,是用来刮胡须的刀,最早在1800年出现,但是由于使用上容易伤人,需要抹上刮胡泡软化胡渣以便刮除。金·坎普·吉列改良刮胡刀,使刮胡刀在使用上更安全,并于1903年
  • 硬粒小麦硬粒小麦又名杜兰小麦(学名:Triticum durum or Triticum turgidum var. durum)为禾本科小麦属,曾经被归为圆锥小麦的亚种。基因组学研究表明:50万年前,二倍体的小麦属乌拉尔图小麦
  • 吐伦试剂银氨溶液(英语:Tollens' reagent),也称氢氧化四氨合银、苛性银、多伦试剂、吐伦试剂、土伦试剂,指含有二氨合银(I)离子(+)的水溶液,一般由硝酸银或其他银化合物与氨水反应制取,用作银
  • 武吉高速公路武吉高速公路在中国国家高速公路网为大广高速公路的重要组成部分,全长285.81公里。起于九江市武宁县澧溪镇大平山,连接大广高速公路湖北段,途经九江市修水县,宜春市铜鼓县、宜丰