分部求和法

✍ dations ◷ 2025-11-12 02:50:43 #分部求和法

分部求和法(英语:Summation by parts)也叫阿贝尔变换(英语:Abel transformation,有别于Abel transform)或阿贝尔引理(英语:Abel's lemma)是求和的一种方法。设 { f k } {displaystyle {f_{k}}} { g k } {displaystyle {g_{k}}} 为两个数列,则有

它被用来证明积分第二中值定理。

分部求和公式也可被写成比较对称的方式:

相关

  • 污染物排放控制技术污染物排放控制基本从三个方面开发:第一种方法是目前最常用的方法,但需要投入并没有经济效益,采取这种方法肯定会增加生产成本,降低产品竞争力,一般污染物排放单位不会自动处理,必
  • 晨间厨房晨间厨房(英语:La Morning),是一个起源于台湾屏东县的连锁早餐店品牌。成立于2000年,创办人为黄义升、邱明正。目前全台约有400家加盟门市,中国约有40家门市。
  • 卡尔·阿莫瑞卡尔·阿莫瑞(Carl Amery,1922年4月9日-2005年5月24日),德国作家、环保运动者,德国绿党创始人之一,四七社的参与者。他生于慕尼黑,曾就读于慕尼黑大学与美国天主教大学。于慕尼黑逝
  • 乙烯菌核利乙烯菌核利(英文通用名vinclozolin)是一种二甲酰亚胺类杀菌剂,平常用于葡萄园等场所。它是一种内分泌干扰素.最近的科学发现表明,暴露在乙烯菌核利下的大鼠的脱氧核糖核酸发生
  • 西区 (台南市)邻接行政区 北区、中区、南区、安平区、安南区西区是一个1945年至2003年间存在于台南市的行政区,为了精简行政而与中区合并,合并后改称中西区。区内商圈以中正商圈最为著名,曾
  • 科斯坦察 (西西里女王)科斯坦察一世(1154年11月2日-1198年11月27日),作为西西里诺曼王朝诸王的女继承人,是1194年-1198年间的西西里女王,1194年-1197年与其夫共治,1198年与其年幼之子腓特烈二世共治。因为
  • 阳平关东站阳平关东站是位于陕西省汉中市宁强县阳平关镇的一个铁路车站,邮政编码724408。车站建于1977年,有阳安铁路经过该站,现仅办理货运,不办理客运业务,仅停8362/1次(汉中至阳平关)职工
  • 莫耶斯峰坐标:67°45′S 61°13′E / 67.750°S 61.217°E / -67.750; 61.217莫耶斯峰(英语:Moyes Peak)是南极洲的山峰,位于麦克罗伯特森地,处于皮尔斯峰以北3.7公里、法拉崖西南面22公里
  • 皮特·多赫提皮特·多赫提(英语:Peter Doherty,1979年3月12日-)是一位英国音乐人、作家、诗人和演员,他是放荡乐团的两位主唱之一,也是蹒跚宝贝的主唱,他也经常作为solo音乐人发表作品并巡演。
  • 通州事件通州事件,亦称通州大屠杀,中日战争时期由日本扶植而成立并且受日本控制的冀东防共自治政府下属通州保安队的中国人士兵于1937年7月29日攻击日本军民与冀东防共自治政府的事件。1937年卢沟桥事变爆发后,华北中国军队和日军发生全面交火。7月29日在北平附近,驻守通州(今通州区)的通州保安队对该地的日军守备队和特务机关发动攻击,通州保安队捣毁了日军机关,俘虏了殷汝耕(通州保安队撤退时殷汝耕逃走)。在此次事件,日方称通州保安队更对居留当地的日本侨民进行袭击,百余名日本侨民(据称多数是老弱妇孺)被抢劫、强奸、凌辱和