首页 >
环面
✍ dations ◷ 2025-11-18 01:07:48 #环面
在几何上,一个环面是一个甜甜圈形状的旋转曲面,由一个圆绕一个和该圆共面的一个轴回转所生成。球面可以视为环面的特殊情况,也就是旋转轴是该圆的直径时。若转轴和圆不相交,圆面中间有一个洞,就像一个甜甜圈,一个呼啦圈,或者一个充了气的轮胎。另一个情况,也就是轴是圆的一根弦的时候,就产生一个挤扁了的球面,就像一个圆的座垫那样。英文Torus曾是拉丁文的这种形状的座垫。圆环面可以参数式地定义为:其中直角坐标系中的关于z-轴方位角对称的环面方程是该圆环面的表面积和内部体积如下根据更一般的定义,环面的生成元不必是圆,而可以是椭圆或任何圆锥曲线。拓扑学上,一个环面是一个定义为两个圆的积的闭合曲面:S1 × S1。
上述曲面,若采用R3诱导的相对拓扑,则同胚于一个拓扑环面,只要它不和自己的轴相交。该环面也可用欧几里得平面的一个商空间来表述,这是通过如下的等价关系来完成的或者等价地说,作为单位正方形将对边粘合的商空间,表述为基本多边形
A
B
A
−
1
B
−
1
{displaystyle ABA^{-1}B^{-1}}
。环面的基本群是圆的基本群和自身的直积:直观地讲,这意味着一个先绕着环面的“洞”(譬如,沿着某个纬度方向的圆)然后绕着环面“实体”(譬如,沿着特定经度方向的圆)的闭路径可以变形成为先绕实体后绕空心的路径。所以,严格的经度方向和严格的纬度方向的路径是可交换的。这可以想象成为两个鞋带互相穿过然后解开再系上。环面的第一同调群和基本群同构(因为基本群是交换群)。环面很容易推广到任意维。n维环面可以定义为n个圆的乘积:上面所述的环面就是2维环面。1维环面就是圆。3维环面很难描述。和2维环面一样,n维环面可以表述为Rn在各个坐标方向整数平移下的商空间。也即,n维环面是Rn模(modulo)整数格点Zn的群作用(该作用就是向量和)。等价地说,n维环面是n维立方体把相对的面两两粘合起来得到的空间。n维环是n维紧致流形的一个例子。它也是紧致可交换李群的一个例子。这是因为单位圆是一个紧致可交换李群(如果把它作为定义了乘法的单位长度复数来看)。环面上的群乘法可以定义为各坐标分别相乘。环面群在紧致李群理论中有重要的作用。部分原因在于所有紧致李群中总是存在一个极大环面;也就是最大可能维度的闭子群环面。n维环面的基本群是一个n阶自由可交换群。n维环面的k阶同调群是n取k阶的自由可交换群。因此可以推出n维环面的欧拉示性数 是0。上同调环H·(Tn,Z)可以等同为Z-模 Zn上的外代数,其生成元为n非平凡闭链的对偶。如果把环面分成若干区域,那么总是可以用最多7种颜色来着色,使得每对相邻区域有不同的颜色。(这和四色问题不同。)在下面的例子中,环面被分为7个区域,两两相邻,说明7色是必须的:
相关
- 黑心食品黑心食品,涉及食品污染(英语:Food Contamination)、微生物学或非法使用食品添加物事件时有发生,如因收获不佳或贮存的粮食衍生霉菌毒素(英语:Mycotoxin),使用违禁兽药产品,工业污染排
- 米尔顿·奥博特阿波罗·米尔顿·奥博特(斯瓦希里语:Apollo Milton Obote,1924年12月28日-2005年10月10日),乌干达政治家,1962至1966年间出任该国总理,1966至1971及1980至1985年期间两度出任总统。1
- 间断平衡间断平衡(英语:Punctuated equilibrium)是一个演化生物学理论。此理论认为行有性生殖的物种可在某一段时间中,经历相对传统观念而言较为快速的物种形成过程,之后又经历一段长时间
- 网络天书网络天书,是基于Wiki技术的网站,2003年8月1日成立,是中国大陆最早的Wiki站点。宗旨是:建立一个完整、准确,内容开放和立场中立的网络天书(不仅仅是百科全书),形成一个尽可能涵盖各个
- 离子推力器离子推力器(Ion thruster),又称离子推进器、离子发动机,其原理是先将气体电离,然后用电场力将带电的离子加速后喷出,以其反作用力推动火箭。这是目前已实用化的火箭技术中,最为经济
- 桃园区桃园区(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvetica,Arial,sans-serif} Thô-
- 波宁顿理查·帕克斯·波宁顿 (1802年10月25日-1828年9月23日)是英国浪漫主义画派的风景画家,是当时英国最有影响力的画家。波宁顿出生于诺丁汉郊区的阿诺德镇,他的父亲曾经担任过狱卒,还
- 本草拾遗本草拾遗,又名陈藏器本草。唐代药物学家陈藏器著,凡十卷。陈藏器于盛唐开元年间曾任陕西京兆府三原县尉,他素好医道,专心攻研药学,喜读《本草》之书。陈藏器以为《神农本草经》遗
- Kopitiam邻里咖啡店或传统咖啡店(马来语:Kopitiam)是一种结合传统早餐和咖啡店的东南亚流行饮食文化,Kopitiam一词是结合马来语中的咖啡(kopi)和福建话中的店(白话字:tiàm)而成的混合词。典
- 辽西辽西可以指:
