首页 >
环面
✍ dations ◷ 2025-11-21 14:36:40 #环面
在几何上,一个环面是一个甜甜圈形状的旋转曲面,由一个圆绕一个和该圆共面的一个轴回转所生成。球面可以视为环面的特殊情况,也就是旋转轴是该圆的直径时。若转轴和圆不相交,圆面中间有一个洞,就像一个甜甜圈,一个呼啦圈,或者一个充了气的轮胎。另一个情况,也就是轴是圆的一根弦的时候,就产生一个挤扁了的球面,就像一个圆的座垫那样。英文Torus曾是拉丁文的这种形状的座垫。圆环面可以参数式地定义为:其中直角坐标系中的关于z-轴方位角对称的环面方程是该圆环面的表面积和内部体积如下根据更一般的定义,环面的生成元不必是圆,而可以是椭圆或任何圆锥曲线。拓扑学上,一个环面是一个定义为两个圆的积的闭合曲面:S1 × S1。
上述曲面,若采用R3诱导的相对拓扑,则同胚于一个拓扑环面,只要它不和自己的轴相交。该环面也可用欧几里得平面的一个商空间来表述,这是通过如下的等价关系来完成的或者等价地说,作为单位正方形将对边粘合的商空间,表述为基本多边形
A
B
A
−
1
B
−
1
{displaystyle ABA^{-1}B^{-1}}
。环面的基本群是圆的基本群和自身的直积:直观地讲,这意味着一个先绕着环面的“洞”(譬如,沿着某个纬度方向的圆)然后绕着环面“实体”(譬如,沿着特定经度方向的圆)的闭路径可以变形成为先绕实体后绕空心的路径。所以,严格的经度方向和严格的纬度方向的路径是可交换的。这可以想象成为两个鞋带互相穿过然后解开再系上。环面的第一同调群和基本群同构(因为基本群是交换群)。环面很容易推广到任意维。n维环面可以定义为n个圆的乘积:上面所述的环面就是2维环面。1维环面就是圆。3维环面很难描述。和2维环面一样,n维环面可以表述为Rn在各个坐标方向整数平移下的商空间。也即,n维环面是Rn模(modulo)整数格点Zn的群作用(该作用就是向量和)。等价地说,n维环面是n维立方体把相对的面两两粘合起来得到的空间。n维环是n维紧致流形的一个例子。它也是紧致可交换李群的一个例子。这是因为单位圆是一个紧致可交换李群(如果把它作为定义了乘法的单位长度复数来看)。环面上的群乘法可以定义为各坐标分别相乘。环面群在紧致李群理论中有重要的作用。部分原因在于所有紧致李群中总是存在一个极大环面;也就是最大可能维度的闭子群环面。n维环面的基本群是一个n阶自由可交换群。n维环面的k阶同调群是n取k阶的自由可交换群。因此可以推出n维环面的欧拉示性数 是0。上同调环H·(Tn,Z)可以等同为Z-模 Zn上的外代数,其生成元为n非平凡闭链的对偶。如果把环面分成若干区域,那么总是可以用最多7种颜色来着色,使得每对相邻区域有不同的颜色。(这和四色问题不同。)在下面的例子中,环面被分为7个区域,两两相邻,说明7色是必须的:
相关
- 腹部肥胖肚腩赘肉俗称啤酒肚,泛指囤积在腰间的脂肪组织,在腹部外斜肌附近尤其常见。男性比女性较容易有肚腩赘肉,那是由于女性身体一般会把脂肪储备在臀部与大腿附近。人年纪愈步入中年
- 泰国上座部佛教泰国佛教(泰语:ศาสนาพุทธในประเทศไทย),是泰国最重要的宗教信仰,主要由南传上座部佛教构成,也有部分华裔等东亚裔信奉大乘佛教,约西元12世纪至13世纪
- 圆觉经《大方广圆觉修多罗了义经》,简称圆觉经,大乘佛教经典,相传在初唐时,由佛陀多罗在洛阳白马寺译出。此经历来受到天台宗、华严宗及禅宗的高度推崇,在汉传佛教中有重要地位,根据其内
- 泛函分析泛函分析(英语:Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅
- 乙酸乙酯乙酸乙酯是乙酸中的羟基被乙氧基取代而生成的化合物,结构简式为CH3COOCH2CH3。乙酸乙酯是无色易燃易挥发的液体;有特殊香味;微溶于水,易溶于有机溶剂。乙酸乙酯可由乙酸、乙酸酐
- 代表代表可以指:
- 附属医疗及社会福利机构管理会卫生福利部附属医疗及社会福利机构管理会(简称医管会或医福会)是中华民国卫生福利部为整合部立医院之效能而成立的任务编组单位。医疗机构社会福利机构卫生福利部双和医院卫生
- 巴比伦王国巴比伦(阿拉伯语:بابل Bābil;阿卡德语:Bābili(m);苏美尔语语标符号:KÁ.DINGIR.RAKI;希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-siz
- 刑曹刑部是中国古代官署名之一。其长官为刑部尚书。刑部最早出自隋朝五省六曹制,其时设有都官尚书,后来改为刑部尚书,为六部之一,长官为刑部尚书。其后由唐至元,此制历代相沿。唐玄宗
- 西濠西濠,是广州的河涌之一。位于广州市西北部,从北部流花湖向南流经朱紫街青石桥,再流经盘福路、长庚路,再由人民路流入珠江,全长约2.6公里。历史上,西濠是北宋时开凿的一条运河,贯通
