黎曼ζ函数

✍ dations ◷ 2025-11-25 16:22:06 #复分析,解析数论,特殊函数,伯恩哈德·黎曼

黎曼ζ函数 ζ() 的定义如下:设一复数 使得 Re() > 1,则定义:

它亦可以用积分定义:

在区域 { : Re() > 1} 上,此无穷级数收敛并为一全纯函数。欧拉在1740年考虑过 为正整数的情况,后来切比雪夫拓展到 > 1。波恩哈德·黎曼认识到:ζ函数可以通过解析延拓,把定义域扩展到几乎整个复数域上的全纯函数 ζ()。这也是黎曼猜想所研究的函数。

虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律和齐夫-曼德尔布罗特定律(英语:Zipf–Mandelbrot law))、物理,以及调音的数学理论中。

ζ函数最早出现于1350年左右,当时的尼克尔·奥里斯姆发现了调和级数发散,即
ζ ( 1 ) = 1 + 1 2 + 1 3 + 1 4 + . . . {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+...\to \infty } ) > 1)
ζ ( 1 ) = 1 + 2 + 3 + 4 + 5 + . . . = 1 12 {\displaystyle \zeta (-1)=1+2+3+4+5+...=-{\frac {1}{12}}} 的无穷乘积,被称为欧拉乘积。这是几何级数的公式和算术基本定理的一个结果。
如果对上式取对数,则可得到



将其中的 log ( 1 t ) {\displaystyle \log(1-t)} )乘以 x s 1 {\displaystyle {\begin{smallmatrix}x^{-s-1}\end{smallmatrix}}} 成立。这里,Γ表示Γ函数。这个公式原来用来构造解析连续性。在 = 1,ζ函数有一个简单极点其留数为1。上述方程中有sin函数, sin ( π s 2 ) {\displaystyle \sin \left({\frac {\pi s}{2}}\right)}  = 2,这些位置是可能的零点,但s为正偶数时, sin ( π s 2 ) Γ ( 1 s ) {\displaystyle \sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)} ),对于偶整数,使用公式

其中2是伯努利数。从这个,我们可以看到ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945等等。(OEIS中的序列A046988/A002432)。这些给出了著名的π的无穷级数。奇整数的情况没有这么简单。拉马努金在这上面做了很多了不起的工作。 s {\displaystyle s\,} 是白努利数。

因为 2+1 =0,故ζ函数在负偶整数点的值为零。

临界线上的数值计算可以通过黎曼-西格尔公式完成。
与之相关的,林德勒夫猜想(英语:Lindelöf hypothesis):对于任意给定的实数 ϵ > 0 {\displaystyle {\begin{smallmatrix}\epsilon >0\end{smallmatrix}}}

相关

  • 甲状腺功能亢进甲状腺功能亢进症(Hyperthyroidism),又称甲状腺机能亢进症,简称甲状腺亢进、甲亢,是一种由于体内过量的三碘甲腺原氨酸(T3)和 四碘甲腺原氨酸(T4,也即甲状腺素)造成的临床症状。而甲状
  • 蜜环菌属蜜环菌属(学名:Armillaria)是属于寄生真菌,生长在树木、灌木丛当中。该属拥有大约45个物种,多为世界上体积最大的生物。其中,该属下体积最大的蜜环菌(Armillaria solidipes)在美国俄
  • 杰奎琳·巴顿杰奎琳·K·巴顿(英语:Jacqueline K. Barton,1952年5月7日-)是一位美国化学家。她是加州理工学院阿瑟和玛丽安·哈尼施纪念化学教授。其研究的主要领域是双链DNA中的横向电子传递
  • 可控飞行撞地可控飞行撞地(英文:Controlled flight into terrain,简称CFIT)为航空事故的一种,意义为一架飞机可由机师正常控制,但因为一些失误而撞上地面、阻碍物或水面坠毁。这个名词是由波音
  • 中国科学院高能物理所中国科学院高能物理研究所是中国高能物理的主要研究所,位于中国北京市石景山区玉泉路,下属著名的北京正负电子对撞机。前身是创建于1950年的中国科学院近代物理研究所,后改称物
  • Pterygota见内文有翅亚纲(学名:Pterygota)为昆虫纲下的一个亚纲阶层。此类的昆虫拥有翅膀,也包含在演化过程中失去了飞行能力和翅膀的物种。这个亚纲包括昆虫中的大多数物种,至今尚存的仅
  • 梦游梦游症(Somnambulism),在神经学上是一种睡眠障碍,症状一般为在半醒状态下在居所内走动,但有些患者会离开居所或作出一些危险的举动,如翻窗、开车甚至一些暴力活动,如杀人等。1846年
  • 车牌车牌可以指:
  • 融雪雪是降水形式的一种,是从云中降落的结晶状固体冰,常以雪花的形式存在。雪是由小的冰颗粒物构成,是一种颗粒材料(英语:granular material),它的结构开放,因此显得柔软。因为气温和湿
  • 闭鞘姜属闭鞘姜属(学名:)是闭鞘姜科下的一个属,为多年生草本植物。该属共有约150种,主要分布于热带美洲和非洲。