黎曼ζ函数

✍ dations ◷ 2025-11-24 15:21:27 #复分析,解析数论,特殊函数,伯恩哈德·黎曼

黎曼ζ函数 ζ() 的定义如下:设一复数 使得 Re() > 1,则定义:

它亦可以用积分定义:

在区域 { : Re() > 1} 上,此无穷级数收敛并为一全纯函数。欧拉在1740年考虑过 为正整数的情况,后来切比雪夫拓展到 > 1。波恩哈德·黎曼认识到:ζ函数可以通过解析延拓,把定义域扩展到几乎整个复数域上的全纯函数 ζ()。这也是黎曼猜想所研究的函数。

虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律和齐夫-曼德尔布罗特定律(英语:Zipf–Mandelbrot law))、物理,以及调音的数学理论中。

ζ函数最早出现于1350年左右,当时的尼克尔·奥里斯姆发现了调和级数发散,即
ζ ( 1 ) = 1 + 1 2 + 1 3 + 1 4 + . . . {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+...\to \infty } ) > 1)
ζ ( 1 ) = 1 + 2 + 3 + 4 + 5 + . . . = 1 12 {\displaystyle \zeta (-1)=1+2+3+4+5+...=-{\frac {1}{12}}} 的无穷乘积,被称为欧拉乘积。这是几何级数的公式和算术基本定理的一个结果。
如果对上式取对数,则可得到



将其中的 log ( 1 t ) {\displaystyle \log(1-t)} )乘以 x s 1 {\displaystyle {\begin{smallmatrix}x^{-s-1}\end{smallmatrix}}} 成立。这里,Γ表示Γ函数。这个公式原来用来构造解析连续性。在 = 1,ζ函数有一个简单极点其留数为1。上述方程中有sin函数, sin ( π s 2 ) {\displaystyle \sin \left({\frac {\pi s}{2}}\right)}  = 2,这些位置是可能的零点,但s为正偶数时, sin ( π s 2 ) Γ ( 1 s ) {\displaystyle \sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)} ),对于偶整数,使用公式

其中2是伯努利数。从这个,我们可以看到ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945等等。(OEIS中的序列A046988/A002432)。这些给出了著名的π的无穷级数。奇整数的情况没有这么简单。拉马努金在这上面做了很多了不起的工作。 s {\displaystyle s\,} 是白努利数。

因为 2+1 =0,故ζ函数在负偶整数点的值为零。

临界线上的数值计算可以通过黎曼-西格尔公式完成。
与之相关的,林德勒夫猜想(英语:Lindelöf hypothesis):对于任意给定的实数 ϵ > 0 {\displaystyle {\begin{smallmatrix}\epsilon >0\end{smallmatrix}}}

相关

  • 弥漫性毒性甲状腺肿弥漫性毒性甲状腺肿(Toxic diffuse goiter),又称格里夫氏症(Graves' disease),为一种主要侵犯甲状腺的自身免疫性疾病。此病为导致甲状腺功能亢进症最常见的原因,且会导致甲状腺肿
  • 乙状结肠乙状结肠是结肠终末部分,通常位于盆腔中,上在左髂嵴平面与降结肠相连,下在第三骶椎平面与直肠相接,长约40~50cm,因呈“乙”状弯曲而得名。
  • 七曜七政,又称七.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature
  • 温内格拉内布(Raneb)是古埃及第二王朝的一位法老。埃及祭司曼涅托在其所编纂的王表中称其为卡伊靠斯(Kaiechos),并认为其统治了埃及39年。但是,从已经出土的拉内布时期的文物中,并未找到
  • CGI GroupCGI集团(CGI Group Inc.) 是一家总部位于加拿大蒙特利尔的跨国公司,业务涉及IT咨询和外包服务及其相关产业。2012年以27亿加元的价格收购英国IT服务公司Logica,因此成为世界第五
  • 社会地理学社会地理学是研究各种社会集团的地域分布、差异及其形成过程的一门学科。其侧重于从社会结构的角度阐述和解释社会空间要素。社会地理学起源于20世纪初,发展于第二次世界大战
  • 226年中国西方
  • 凌鸿勋凌鸿勋(1894年4月15日-1981年8月15日),字竹铭,广东省番禺县人,原籍江苏省常熟县,铁道工程学家。他幼年熟读四书五经,1910年以官费生考入邮传部上海高等实业学堂 (1911年改名南洋大学
  • 林牛林牛(学名:Bos sauveli)又名柬埔寨野牛、高棉牛、考布利牛或灰牛。林牛和爪哇野牛一样怕生,原本认为是瘤牛和爪哇野牛的杂交种,直到1937年才被确认是独立物种。林牛体型巨大,体长
  • 蜘蛛猴属蜘蛛猴属(学名:),统称为蜘蛛猴或蜘蛛猿,蜘蛛猴科的一属,生活于墨西哥以南到巴西的南部到巴西的中南美洲广大地区的热带雨林中。与绒毛蛛猴属是近亲。是一种很难捕捉的小型动物,群居