黎曼ζ函数

✍ dations ◷ 2025-07-19 07:07:09 #复分析,解析数论,特殊函数,伯恩哈德·黎曼

黎曼ζ函数 ζ() 的定义如下:设一复数 使得 Re() > 1,则定义:

它亦可以用积分定义:

在区域 { : Re() > 1} 上,此无穷级数收敛并为一全纯函数。欧拉在1740年考虑过 为正整数的情况,后来切比雪夫拓展到 > 1。波恩哈德·黎曼认识到:ζ函数可以通过解析延拓,把定义域扩展到几乎整个复数域上的全纯函数 ζ()。这也是黎曼猜想所研究的函数。

虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齐夫定律和齐夫-曼德尔布罗特定律(英语:Zipf–Mandelbrot law))、物理,以及调音的数学理论中。

ζ函数最早出现于1350年左右,当时的尼克尔·奥里斯姆发现了调和级数发散,即
ζ ( 1 ) = 1 + 1 2 + 1 3 + 1 4 + . . . {\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}+...\to \infty } ) > 1)
ζ ( 1 ) = 1 + 2 + 3 + 4 + 5 + . . . = 1 12 {\displaystyle \zeta (-1)=1+2+3+4+5+...=-{\frac {1}{12}}} 的无穷乘积,被称为欧拉乘积。这是几何级数的公式和算术基本定理的一个结果。
如果对上式取对数,则可得到



将其中的 log ( 1 t ) {\displaystyle \log(1-t)} )乘以 x s 1 {\displaystyle {\begin{smallmatrix}x^{-s-1}\end{smallmatrix}}} 成立。这里,Γ表示Γ函数。这个公式原来用来构造解析连续性。在 = 1,ζ函数有一个简单极点其留数为1。上述方程中有sin函数, sin ( π s 2 ) {\displaystyle \sin \left({\frac {\pi s}{2}}\right)}  = 2,这些位置是可能的零点,但s为正偶数时, sin ( π s 2 ) Γ ( 1 s ) {\displaystyle \sin \left({\frac {\pi s}{2}}\right)\Gamma (1-s)} ),对于偶整数,使用公式

其中2是伯努利数。从这个,我们可以看到ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945等等。(OEIS中的序列A046988/A002432)。这些给出了著名的π的无穷级数。奇整数的情况没有这么简单。拉马努金在这上面做了很多了不起的工作。 s {\displaystyle s\,} 是白努利数。

因为 2+1 =0,故ζ函数在负偶整数点的值为零。

临界线上的数值计算可以通过黎曼-西格尔公式完成。
与之相关的,林德勒夫猜想(英语:Lindelöf hypothesis):对于任意给定的实数 ϵ > 0 {\displaystyle {\begin{smallmatrix}\epsilon >0\end{smallmatrix}}}

相关

  • 不孕不育不孕(英语:Infertility)又称不育,是指人类、动物或植物无法透过有性生殖繁衍后代的情形。对于大部分健康的成熟动植物个体而言,会在生命中的特定时期内有生育能力,不过真社会性物
  • 淀粉样物质淀粉样物质(英语:amyloid)是一种不可溶的纤维性蛋白质,“淀粉样物质”,港澳台称为“类淀粉蛋白”。在器官中不正常的堆积,会造成类淀粉沉积症(amyloidosis)。在许多神经性疾病,如阿兹
  • 自组装自组装(英语:Self-assembly,或译自我组装)是用来形容一无序系统在没有外部的干预下,由个别部件间之互动(如吸引和排斥,或自发生成化学键),而组成一个有组织的结构之过程。近年自组装
  • 几何拓扑几何拓扑学是数学中研究流形以及它们的嵌入的分支,俱代表性的主题有纽结理论和辫子群。纽结理论和辫子群是几何拓扑学研究范围的典型例子。随着时间的变迁几何拓扑学几乎等同
  • XG血型系统Xg血型系统等位基因位于第二十三对染色体,也就是性染色体中的X染色体。自公元1962年由J.D.曼等用一个多次输血的病人血清时发现一种红细胞抗原Xg2。此抗原由X短臂上的Xg等位
  • 852年重要事件及趋势逝世重要人物
  • 雪岳山国立公园雪岳山国立公园(朝鲜语:설악산국립공원/雪嶽山國立公園 Seoraksan Gungnip Gongwon */?)是位于韩国江原道束草市、襄阳郡、麟蹄郡、高城郡的山岳型国立公园。1970年3月24日与
  • 哈维·韦恩斯坦哈维·温斯坦,CBE(英语:Harvey Weinstein,/ˈwaɪnstiːn/,1952年3月19日-)是一名美国电影监制和前任电影制片厂的执行董事。他是米拉麦克斯影业的联合创始人,公司曾制作了几部受欢
  • 一级水系一级水系是指在日本《河川法》的划分下,由国土交通大臣指定,对日本的国土安全及国民经济有相当重要性的水系。目前全日本共有109个水系,依《指定河川法第四条第一款中水系的政
  • 萨哈罗夫奖萨哈罗夫思想自由奖(英语:Sakharov Prize for Freedom of Thought,简称萨哈罗夫奖)名从俄罗斯著名物理学家、异议人士及1975年诺贝尔和平奖得主安德烈·萨哈罗夫,1988年12月由欧