经典电磁理论的协变形式

✍ dations ◷ 2025-04-02 12:46:02 #基本物理概念,电磁学,狭义相对论

经典电磁理论的协变形式是指将经典的电磁学定律(主要包括麦克斯韦方程组和洛伦兹力)纳入狭义相对论的框架,利用洛伦兹协变的四维矢量和四维张量写成“外在协变”的形式。这种形式的好处在于,经典的电磁学定律在任意惯性坐标系下具有相同的形式,并能够使场和力在不同惯性系下的变换更加容易表述。

在本文中,闵可夫斯基度规的形式被规定为 d i a g ( 1 , 1 , 1 , 1 ) {\displaystyle diag(1,-1,-1,-1)\,} αβ是电磁张量, α是四维电流密度,є αβγδ是列维-奇维塔符号,所有角标满足爱因斯坦求和约定。第一个张量方程表述了两个非齐次的麦克斯韦方程:高斯定律和安培定律;第二个张量方程表述了两个齐次的麦克斯韦方程:法拉第电磁感应定律和磁场的高斯定律。

在无源的情形下,麦克斯韦方程组退化为与场强有关的波方程:

这里 {\displaystyle \Box } })。第一个张量方程对应着四个标量方程,其中 β {\displaystyle \beta } 的值为0到3。第二个张量方程可展开为 4 3 = 64 {\displaystyle 4^{3}=64} 个标量方程,但只有四个是独立的。

为了方便可以将四维梯度写作更简洁的形式:

从而麦克斯韦方程组最终的协变形式为 F α β , α = μ 0 J β {\displaystyle {F^{\alpha \beta }}_{,\alpha }=\mu _{0}J^{\beta }} 以及 ϵ α β γ δ F α β , γ = 0   . {\displaystyle \epsilon ^{\alpha \beta \gamma \delta }{F_{\alpha \beta ,\gamma }}=0\ .}

由电荷守恒得到的连续性方程的协变形式为

电磁场通过洛伦兹力来影响其中粒子的运动。仅考虑洛伦兹力的影响时,牛顿运动定律用场强张量表示的相对论形式为

其中 p {\displaystyle p\,} 是四维动量, q {\displaystyle q\,} 是电荷, u {\displaystyle u\,} 是四维速度, τ {\displaystyle \tau \,} 是粒子的固有时。

如果采用(普通)时间而不是固有时,方程则写为

在连续性介质中,三维的力密度(空间分量:三维小体元中的洛伦兹力除以体元的体积)和一维的功率密度(时间分量:三维小体元中传播的功率除以体元的体积)合并为一个协变的力密度矢量 f μ . {\displaystyle f_{\mu }\,.} 。从而洛伦兹力的密度的空间分量为 f = ρ E + J × B {\displaystyle \mathbf {f} =\rho \mathbf {E} +\mathbf {J} \times \mathbf {B} } . 写为外在协变的形式为

电磁应力-能量张量满足下面的微分方程,此方程将电磁张量和四维电流密度相联系:

这个方程表述了电磁相互作用中动量和能量的守恒律。

洛伦茨规范是具有洛伦兹不变性的规范条件。(在规范对称性下可以选取多种不同的规范条件,例如库仑规范,通常在一个惯性系下满足的规范条件将不能同时满足于另一个惯性系。)

洛伦茨规范用四维势表示为

洛伦茨规范下的麦克斯韦方程组可表为

其中 {\displaystyle \Box } 是达朗贝尔算符。

如果考虑介质中的麦克斯韦方程组,此时的电流 J α {\displaystyle J^{\alpha }\,} 可分为自由电流 J α free {\displaystyle {J^{\alpha }}_{\text{free}}\,} 和束缚电流 J α bound {\displaystyle {J^{\alpha }}_{\text{bound}}\,}

其中束缚电流的部分来自介质的磁化和电极化,这两者构成一个反对称的反变磁化-极化张量:

根据麦克斯韦方程,束缚电流为

将磁化-极化张量和真空中的电磁张量 F μ ν , {\displaystyle F^{\mu \nu }\,,} 合并,我们可以得到反对称的反变电磁位移张量,其中包含了电位移矢量 {\displaystyle \!} 和磁场强度矢量 {\displaystyle \,}

它们之间的关系为

这个方程等价于经典电磁学中的 D = ϵ 0 E + P {\displaystyle \mathbf {D} =\epsilon _{0}\mathbf {E} +\mathbf {P} \,} H = 1 μ 0 B M . {\displaystyle \mathbf {H} ={\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} \,.} 并进一步可以推导出介质中的安培定律 × H = J free + D t {\displaystyle \mathbf {\nabla } \times \mathbf {H} =\mathbf {J} _{\text{free}}+{\frac {\partial \mathbf {D} }{\partial t}}} 和高斯定律 D = ρ free {\displaystyle \mathbf {\nabla } \cdot \mathbf {D} =\rho _{\text{free}}} ,即

束缚电流和自由电流的定义已经由上面给出,并且各自满足守恒律:

由此,如果我们需要求解介质中的电流密度 J α , {\displaystyle J^{\alpha }\,,} ,可以将其分为求解自由电流密度 J α free , {\displaystyle {J^{\alpha }}_{\text{free}}\,,} 和求解磁化-极化张量 M α β {\displaystyle {\mathcal {M}}^{\alpha \beta }\,} 的问题。例如,在低频线性介质中有

其中观察者在与介质共同运动的参考系中, σ {\displaystyle \sigma \,} 是电导率, χ e {\displaystyle \chi _{e}\,} 是电极化率, χ m {\displaystyle \chi _{m}\,} 是磁化率。

单位为焦耳/米3时,真空中的经典电磁拉格朗日量为

其中包含了表示场强的项和表示相互作用的项。 如果我们将自由电流和束缚电流分开,则拉格朗日量写为

在广义相对论中,度规张量 g α β {\displaystyle g_{\alpha \beta }\,} 不再是恒定的 η α β {\displaystyle \eta _{\alpha \beta }\,} ,而有可能随时间和空间变化,度规张量则是引力场的势。

真空中处于引力场中的麦克斯韦方程组为

其中 g α β {\displaystyle g^{\alpha \beta }\,} 是度规张量 g α β {\displaystyle g_{\alpha \beta }\,} 的倒数,而 g {\displaystyle g\,} 是度规张量的行列式, A α {\displaystyle A_{\alpha }\,} 是电磁场的四维势, F α β {\displaystyle F^{\alpha \beta }\,} 是电磁张量, D μ ν {\displaystyle D^{\mu \nu }\,} 是位移电流张量, f μ {\displaystyle f_{\mu }\,} 是洛伦兹力的密度, J μ {\displaystyle J_{\mu }\,} 是四维电流密度。尽管方程组中使用了偏导数,这些方程仍然在任意曲面坐标变换下是协变的:也就是说如果将偏导数换成协变导数,引入的附加项会自动消去从而保持形式不变。

相关

  • 埃博拉出血热爆发列表此埃博拉出血热爆发列表叙述了埃博拉出血热的历年出现记录。此病于1976年首次现身,并常在非洲撒哈拉以南的地区造成间歇性流行。目前共有5种病毒被国际病毒分类委员会纳入埃
  • 军团罗马军团(英语:Roman legion,源自拉丁语:legio,意为军衔)为罗马共和国及罗马帝国时期的正规军队,以其高效的适应性及机动性征服了地中海沿岸地区。按照古罗马传统,一旦有战争爆发,执
  • 纽斯特利亚纽斯特利亚 (Neustria)是法国的一个历史上的区域,这一地区是法兰克王国在511年获得的土地,范围南起阿基坦,北至英吉利海峡,包括了现在法国北部大部分地区,巴黎和苏瓦松均位于这一地
  • 二郎神二郎神,又称:川主、显圣二郎真君、昭惠灵显王、灌口二郎、二郎真君、灌江神、赤城王、清源妙道真君。是中国民间和道教的神祇人物。民间多认为他是一位与水利、农耕、防止水灾
  • 新布朗斯维克新不伦瑞克(New Brunswick)为位于美国新泽西州中部密德萨克斯县的城市,该城市坐落在拉里坦河(Raritan River)南岸,距纽约市31英里(50公里)。据2000年美国联邦人口调查, 该市人口数为4
  • 原核翻译原核翻译(Prokaryotic translation)是指原核生物细胞中信使RNA被70S核糖体翻译为蛋白质的过程。该过程可分为起始、延伸、终止与再循环四个主要步骤。原核生物的翻译起始阶段
  • 黄芝琪黄芝琪(Grace Huang,1983年1月26日-),是澳洲籍华裔模特儿兼演员,在澳洲出生。代表作品包括《名扬四海》、《超脑特工》、《寒战》、《开脑儆探》。
  • 二战期间的马达加斯加马达加斯加,在二战期间的正式名称是法属马达加斯加,当时仍然是法国殖民地,自1885年以来一直处于法国政府之下。由于存在极其重要的港口,它在战争中发挥了重要作用。1940年法国沦
  • 十二律十二律是中国传统音乐使用的音律,后来逐渐传入到朝鲜、日本、越南等东南亚国家。律,本来是用来定音的竹管,古人用12个不同长度的律管,吹出12个高度不同的标准音高,以定出音阶的高
  • 火车南站街道火车南站街道,是中华人民共和国四川省成都市武侯区下辖的一个乡镇级行政单位。火车南站街道下辖以下地区:桐梓林社区、锦官新城社区、得胜社区、高攀桥社区、长寿苑社区和南站