经典电磁理论的协变形式

✍ dations ◷ 2025-10-20 06:16:27 #基本物理概念,电磁学,狭义相对论

经典电磁理论的协变形式是指将经典的电磁学定律(主要包括麦克斯韦方程组和洛伦兹力)纳入狭义相对论的框架,利用洛伦兹协变的四维矢量和四维张量写成“外在协变”的形式。这种形式的好处在于,经典的电磁学定律在任意惯性坐标系下具有相同的形式,并能够使场和力在不同惯性系下的变换更加容易表述。

在本文中,闵可夫斯基度规的形式被规定为 d i a g ( 1 , 1 , 1 , 1 ) {\displaystyle diag(1,-1,-1,-1)\,} αβ是电磁张量, α是四维电流密度,є αβγδ是列维-奇维塔符号,所有角标满足爱因斯坦求和约定。第一个张量方程表述了两个非齐次的麦克斯韦方程:高斯定律和安培定律;第二个张量方程表述了两个齐次的麦克斯韦方程:法拉第电磁感应定律和磁场的高斯定律。

在无源的情形下,麦克斯韦方程组退化为与场强有关的波方程:

这里 {\displaystyle \Box } })。第一个张量方程对应着四个标量方程,其中 β {\displaystyle \beta } 的值为0到3。第二个张量方程可展开为 4 3 = 64 {\displaystyle 4^{3}=64} 个标量方程,但只有四个是独立的。

为了方便可以将四维梯度写作更简洁的形式:

从而麦克斯韦方程组最终的协变形式为 F α β , α = μ 0 J β {\displaystyle {F^{\alpha \beta }}_{,\alpha }=\mu _{0}J^{\beta }} 以及 ϵ α β γ δ F α β , γ = 0   . {\displaystyle \epsilon ^{\alpha \beta \gamma \delta }{F_{\alpha \beta ,\gamma }}=0\ .}

由电荷守恒得到的连续性方程的协变形式为

电磁场通过洛伦兹力来影响其中粒子的运动。仅考虑洛伦兹力的影响时,牛顿运动定律用场强张量表示的相对论形式为

其中 p {\displaystyle p\,} 是四维动量, q {\displaystyle q\,} 是电荷, u {\displaystyle u\,} 是四维速度, τ {\displaystyle \tau \,} 是粒子的固有时。

如果采用(普通)时间而不是固有时,方程则写为

在连续性介质中,三维的力密度(空间分量:三维小体元中的洛伦兹力除以体元的体积)和一维的功率密度(时间分量:三维小体元中传播的功率除以体元的体积)合并为一个协变的力密度矢量 f μ . {\displaystyle f_{\mu }\,.} 。从而洛伦兹力的密度的空间分量为 f = ρ E + J × B {\displaystyle \mathbf {f} =\rho \mathbf {E} +\mathbf {J} \times \mathbf {B} } . 写为外在协变的形式为

电磁应力-能量张量满足下面的微分方程,此方程将电磁张量和四维电流密度相联系:

这个方程表述了电磁相互作用中动量和能量的守恒律。

洛伦茨规范是具有洛伦兹不变性的规范条件。(在规范对称性下可以选取多种不同的规范条件,例如库仑规范,通常在一个惯性系下满足的规范条件将不能同时满足于另一个惯性系。)

洛伦茨规范用四维势表示为

洛伦茨规范下的麦克斯韦方程组可表为

其中 {\displaystyle \Box } 是达朗贝尔算符。

如果考虑介质中的麦克斯韦方程组,此时的电流 J α {\displaystyle J^{\alpha }\,} 可分为自由电流 J α free {\displaystyle {J^{\alpha }}_{\text{free}}\,} 和束缚电流 J α bound {\displaystyle {J^{\alpha }}_{\text{bound}}\,}

其中束缚电流的部分来自介质的磁化和电极化,这两者构成一个反对称的反变磁化-极化张量:

根据麦克斯韦方程,束缚电流为

将磁化-极化张量和真空中的电磁张量 F μ ν , {\displaystyle F^{\mu \nu }\,,} 合并,我们可以得到反对称的反变电磁位移张量,其中包含了电位移矢量 {\displaystyle \!} 和磁场强度矢量 {\displaystyle \,}

它们之间的关系为

这个方程等价于经典电磁学中的 D = ϵ 0 E + P {\displaystyle \mathbf {D} =\epsilon _{0}\mathbf {E} +\mathbf {P} \,} H = 1 μ 0 B M . {\displaystyle \mathbf {H} ={\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} \,.} 并进一步可以推导出介质中的安培定律 × H = J free + D t {\displaystyle \mathbf {\nabla } \times \mathbf {H} =\mathbf {J} _{\text{free}}+{\frac {\partial \mathbf {D} }{\partial t}}} 和高斯定律 D = ρ free {\displaystyle \mathbf {\nabla } \cdot \mathbf {D} =\rho _{\text{free}}} ,即

束缚电流和自由电流的定义已经由上面给出,并且各自满足守恒律:

由此,如果我们需要求解介质中的电流密度 J α , {\displaystyle J^{\alpha }\,,} ,可以将其分为求解自由电流密度 J α free , {\displaystyle {J^{\alpha }}_{\text{free}}\,,} 和求解磁化-极化张量 M α β {\displaystyle {\mathcal {M}}^{\alpha \beta }\,} 的问题。例如,在低频线性介质中有

其中观察者在与介质共同运动的参考系中, σ {\displaystyle \sigma \,} 是电导率, χ e {\displaystyle \chi _{e}\,} 是电极化率, χ m {\displaystyle \chi _{m}\,} 是磁化率。

单位为焦耳/米3时,真空中的经典电磁拉格朗日量为

其中包含了表示场强的项和表示相互作用的项。 如果我们将自由电流和束缚电流分开,则拉格朗日量写为

在广义相对论中,度规张量 g α β {\displaystyle g_{\alpha \beta }\,} 不再是恒定的 η α β {\displaystyle \eta _{\alpha \beta }\,} ,而有可能随时间和空间变化,度规张量则是引力场的势。

真空中处于引力场中的麦克斯韦方程组为

其中 g α β {\displaystyle g^{\alpha \beta }\,} 是度规张量 g α β {\displaystyle g_{\alpha \beta }\,} 的倒数,而 g {\displaystyle g\,} 是度规张量的行列式, A α {\displaystyle A_{\alpha }\,} 是电磁场的四维势, F α β {\displaystyle F^{\alpha \beta }\,} 是电磁张量, D μ ν {\displaystyle D^{\mu \nu }\,} 是位移电流张量, f μ {\displaystyle f_{\mu }\,} 是洛伦兹力的密度, J μ {\displaystyle J_{\mu }\,} 是四维电流密度。尽管方程组中使用了偏导数,这些方程仍然在任意曲面坐标变换下是协变的:也就是说如果将偏导数换成协变导数,引入的附加项会自动消去从而保持形式不变。

相关

  • 乔治·斯托克斯乔治·加布里埃尔·斯托克斯爵士,第一代从男爵,FRS(英语:Sir George Gabriel Stokes, 1st Baronet,1819年8月13日-1903年2月1日),爱尔兰数学家和物理学家,就读和任教于剑桥大学,主要贡
  • 异涡动物门见内文异涡虫(学名:Xenoturbella) 是一类生活在海底极简单的两侧对称动物,现在仅知1属8种,分布于波罗的海和太平洋东部。第一个物种于1915年首次被发现。这种生物早在1949年就被
  • 内政部户政司内政部户政司(简称户政司)是中华民国内政部下属一个业务机关。户籍行政科国籍行政科户口调查科人口政策科户籍作业科户政人员培训科
  • Cu(phth)邻苯二甲酸铜是铜(II)的邻苯二甲酸盐,化学式为C6H4(COO)2Cu。邻苯二甲酸铜一水合物为单斜晶体,α=26.10±0.025,b=9.79±0.01,c=6.67±0.01Å,γ=93.9±0.2°。空间群B2/b(C2A6,
  • 榛果榛子,亦作榛果,是榛属植物的的坚果,果皮坚硬,果仁可食,是来自中国北方的野生果实。人类日常食用的榛子,其实是取自欧榛果实的果仁。这种欧榛仁,是国际贸易市场四大坚果之一。榛子与
  • 铑的同位素铑(原子量:102.90550(2))共有58个同位素,其中有1个同位素是稳定的。天然存在的铑元素中,只由一种同位素构成,即唯一稳定的的铑同位素——103 Rh。除了稳定的铑-103之外,最稳定的同
  • 沃希托国家森林沃希托国家森林(英语:Ouachita National Forest)是美国的一座国家森林,位于阿肯色州的中西部和俄克拉荷马州的东部。
  • 真不像我《真不像我》(日语:らしくない)是日本女子偶像团体NMB48的第10张单曲唱片,于2014年11月5日由吉本R&C以“laugh out loud! records”的品牌发行。乐曲是秋元康作词、编曲是“ivor
  • 卡姆登 (阿拉巴马州)卡姆登(英文:Camden),是美国阿拉巴马州下属的一座城市。面积约为4.18平方英里(约合 10.84平方公里)。根据2010年美国人口普查,该市有人口2,020人,人口密度为482.79/平方英里(约合186.
  • 当代传奇剧场当代传奇剧场(英语:Contemporary Legend Theatre),于1986年成立,是台湾表演艺术团体之中,少数在国际舞台上深受瞩目的团体之一。创团契机乃因当时台湾部分戏曲演员意识到传统艺术