经典电磁理论的协变形式

✍ dations ◷ 2024-10-30 15:26:24 #基本物理概念,电磁学,狭义相对论

经典电磁理论的协变形式是指将经典的电磁学定律(主要包括麦克斯韦方程组和洛伦兹力)纳入狭义相对论的框架,利用洛伦兹协变的四维矢量和四维张量写成“外在协变”的形式。这种形式的好处在于,经典的电磁学定律在任意惯性坐标系下具有相同的形式,并能够使场和力在不同惯性系下的变换更加容易表述。

在本文中,闵可夫斯基度规的形式被规定为 d i a g ( 1 , 1 , 1 , 1 ) {\displaystyle diag(1,-1,-1,-1)\,} αβ是电磁张量, α是四维电流密度,є αβγδ是列维-奇维塔符号,所有角标满足爱因斯坦求和约定。第一个张量方程表述了两个非齐次的麦克斯韦方程:高斯定律和安培定律;第二个张量方程表述了两个齐次的麦克斯韦方程:法拉第电磁感应定律和磁场的高斯定律。

在无源的情形下,麦克斯韦方程组退化为与场强有关的波方程:

这里 {\displaystyle \Box } })。第一个张量方程对应着四个标量方程,其中 β {\displaystyle \beta } 的值为0到3。第二个张量方程可展开为 4 3 = 64 {\displaystyle 4^{3}=64} 个标量方程,但只有四个是独立的。

为了方便可以将四维梯度写作更简洁的形式:

从而麦克斯韦方程组最终的协变形式为 F α β , α = μ 0 J β {\displaystyle {F^{\alpha \beta }}_{,\alpha }=\mu _{0}J^{\beta }} 以及 ϵ α β γ δ F α β , γ = 0   . {\displaystyle \epsilon ^{\alpha \beta \gamma \delta }{F_{\alpha \beta ,\gamma }}=0\ .}

由电荷守恒得到的连续性方程的协变形式为

电磁场通过洛伦兹力来影响其中粒子的运动。仅考虑洛伦兹力的影响时,牛顿运动定律用场强张量表示的相对论形式为

其中 p {\displaystyle p\,} 是四维动量, q {\displaystyle q\,} 是电荷, u {\displaystyle u\,} 是四维速度, τ {\displaystyle \tau \,} 是粒子的固有时。

如果采用(普通)时间而不是固有时,方程则写为

在连续性介质中,三维的力密度(空间分量:三维小体元中的洛伦兹力除以体元的体积)和一维的功率密度(时间分量:三维小体元中传播的功率除以体元的体积)合并为一个协变的力密度矢量 f μ . {\displaystyle f_{\mu }\,.} 。从而洛伦兹力的密度的空间分量为 f = ρ E + J × B {\displaystyle \mathbf {f} =\rho \mathbf {E} +\mathbf {J} \times \mathbf {B} } . 写为外在协变的形式为

电磁应力-能量张量满足下面的微分方程,此方程将电磁张量和四维电流密度相联系:

这个方程表述了电磁相互作用中动量和能量的守恒律。

洛伦茨规范是具有洛伦兹不变性的规范条件。(在规范对称性下可以选取多种不同的规范条件,例如库仑规范,通常在一个惯性系下满足的规范条件将不能同时满足于另一个惯性系。)

洛伦茨规范用四维势表示为

洛伦茨规范下的麦克斯韦方程组可表为

其中 {\displaystyle \Box } 是达朗贝尔算符。

如果考虑介质中的麦克斯韦方程组,此时的电流 J α {\displaystyle J^{\alpha }\,} 可分为自由电流 J α free {\displaystyle {J^{\alpha }}_{\text{free}}\,} 和束缚电流 J α bound {\displaystyle {J^{\alpha }}_{\text{bound}}\,}

其中束缚电流的部分来自介质的磁化和电极化,这两者构成一个反对称的反变磁化-极化张量:

根据麦克斯韦方程,束缚电流为

将磁化-极化张量和真空中的电磁张量 F μ ν , {\displaystyle F^{\mu \nu }\,,} 合并,我们可以得到反对称的反变电磁位移张量,其中包含了电位移矢量 {\displaystyle \!} 和磁场强度矢量 {\displaystyle \,}

它们之间的关系为

这个方程等价于经典电磁学中的 D = ϵ 0 E + P {\displaystyle \mathbf {D} =\epsilon _{0}\mathbf {E} +\mathbf {P} \,} H = 1 μ 0 B M . {\displaystyle \mathbf {H} ={\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} \,.} 并进一步可以推导出介质中的安培定律 × H = J free + D t {\displaystyle \mathbf {\nabla } \times \mathbf {H} =\mathbf {J} _{\text{free}}+{\frac {\partial \mathbf {D} }{\partial t}}} 和高斯定律 D = ρ free {\displaystyle \mathbf {\nabla } \cdot \mathbf {D} =\rho _{\text{free}}} ,即

束缚电流和自由电流的定义已经由上面给出,并且各自满足守恒律:

由此,如果我们需要求解介质中的电流密度 J α , {\displaystyle J^{\alpha }\,,} ,可以将其分为求解自由电流密度 J α free , {\displaystyle {J^{\alpha }}_{\text{free}}\,,} 和求解磁化-极化张量 M α β {\displaystyle {\mathcal {M}}^{\alpha \beta }\,} 的问题。例如,在低频线性介质中有

其中观察者在与介质共同运动的参考系中, σ {\displaystyle \sigma \,} 是电导率, χ e {\displaystyle \chi _{e}\,} 是电极化率, χ m {\displaystyle \chi _{m}\,} 是磁化率。

单位为焦耳/米3时,真空中的经典电磁拉格朗日量为

其中包含了表示场强的项和表示相互作用的项。 如果我们将自由电流和束缚电流分开,则拉格朗日量写为

在广义相对论中,度规张量 g α β {\displaystyle g_{\alpha \beta }\,} 不再是恒定的 η α β {\displaystyle \eta _{\alpha \beta }\,} ,而有可能随时间和空间变化,度规张量则是引力场的势。

真空中处于引力场中的麦克斯韦方程组为

其中 g α β {\displaystyle g^{\alpha \beta }\,} 是度规张量 g α β {\displaystyle g_{\alpha \beta }\,} 的倒数,而 g {\displaystyle g\,} 是度规张量的行列式, A α {\displaystyle A_{\alpha }\,} 是电磁场的四维势, F α β {\displaystyle F^{\alpha \beta }\,} 是电磁张量, D μ ν {\displaystyle D^{\mu \nu }\,} 是位移电流张量, f μ {\displaystyle f_{\mu }\,} 是洛伦兹力的密度, J μ {\displaystyle J_{\mu }\,} 是四维电流密度。尽管方程组中使用了偏导数,这些方程仍然在任意曲面坐标变换下是协变的:也就是说如果将偏导数换成协变导数,引入的附加项会自动消去从而保持形式不变。

相关

  • 苏氨酸苏氨酸或羟丁氨酸(Threonine)是一种必需的氨基酸,为白色斜方晶系或结晶性粉末,微甜。因结构与苏糖酸相似而得名。主要用于医药、化学试剂、营养强化剂,可以强化乳制品,具有恢复人
  • 树突树突(英语:Dendrites)是神经元解剖结构的一部分,为从神经元的细胞本体发出的多分支突起。树突为神经元的输入通道,其功能是将自其他神经元所接收的动作电位(电信号)传送至细胞本体
  • 冬菜冬菜、天津保存蔬菜 (Tianjin preserved vegetable) 为中国传统腌菜之一,以大白菜、食盐水、蒜为主要材料。以天津、南充出产者最有名。使用蒜的又称‘荤冬菜’,对应未加蒜的
  • 辉发河辉发河(满语:ᡥᠣᡳᡶᠠ ᠪᡳᡵᠠ,转写:Hoifa bira)位于中国东北地区中部,是第二松花江左岸支流。辉发河上游也称大柳河,古时曾名卫乐江(韦泺江)、回跋江、回霸江、灰扒江。全长267.7
  • 肺部肿瘤是肺部的赘生性肿瘤,包括:肺/肺系统的原发肿瘤(英语:Primary tumor):可能长在肺部的非肺肿瘤:转移或其他来源的继发肿瘤:
  • 圣克罗蒂德圣殿 (巴黎)圣克洛狄德圣殿(Basilique Ste-Clotilde)是法国巴黎第七区的一座天主教宗座圣殿,位于马蒂尼亚克路12号,以其壮观的双塔和管风琴闻名。本教堂起初由巴黎市议会于1827年提议兴建。
  • 杰·梅洛许杰·梅洛许(H. Jay Melosh,1947年6月23日-)是一位美国地球物理学家,是研究撞击坑的专家。梅洛许于1947年生于新泽西州帕特森,在普林斯顿大学获得物理学学士学位,再于1972年获得加州
  • 林德义林德义(1950年4月2日-),生于台湾屏东县玛家乡,属台湾原住民族排湾族,因为写作的年代很早,被认为是台湾原住民文学的拓荒者之一。林德义于1967年参加暑期青年战斗文艺营,以一篇‘山的
  • 瓦基弗银行女排俱乐部瓦基弗银行女排俱乐部(英语:VakıfBank Sports Club),是一间位于土耳其伊斯坦布尔的女排俱乐部,成立于1986年,曾三次(2013年、2017年及2018年)夺得世界女排俱乐部锦标赛冠军和四度(20
  • 人心果人心果,别称仁心果、赤铁果、在台湾又称吴凤柿、人参果、台语查某李仔、查某囡仔、英文称Sapodilla、马来文称Ciku、印尼文称Sawo、越南称Hồng xiêm、老挝称Lamood或Rarmoo