首页 >
高斯定律
✍ dations ◷ 2025-06-28 13:33:11 #高斯定律
高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系:此方程是卡尔·高斯在1835年提出的,但直到1867年才发布。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由反平方定律决定的物理量,例如引力或者辐照度。参看散度定理。采用国际单位制,对于空间内的任意体积
V
{displaystyle mathbb {V} }
,其表面
A
{displaystyle mathbb {A} }
,真空中的高斯定律的积分形式可以用方程表达为其中,
E
{displaystyle mathbf {E} }
为电场,
d
a
′
{displaystyle dmathbf {a} '}
为闭合曲面
A
{displaystyle mathbb {A} }
的微分面积,由曲面向外定义为其方向,
Q
{displaystyle Q}
是在体积
V
{displaystyle mathbb {V} }
内的总电荷数量。给予空间的某个区域内,任意位置的电场。原则上,应用高斯定律,可以很容易地计算出电荷的分布。只要积分电场于任意区域的表面,再乘以真空电容率,就可以得到那区域内的电荷数量。但是,更常遇到的是逆反问题。给予电荷的分布,求算在某位置的电场。这问题比较难解析。虽然知道穿过某一个闭合曲面的电通量,这资料仍旧不足以解析问题。在闭合曲面任意位置的电场可能会是非常的复杂。假若,问题本身显示出某种对称性,促使在闭合曲面位置的电场大小变得均匀。那么,就可以借着这均匀性来计算电场。像圆柱对称、平面对称、球对称等等,这些空间的对称性,都能帮助高斯定律来解析问题。若想知道怎样利用这些对称性来计算电场,请参阅高斯曲面(Gaussian surface)。高斯定律的方程的微分形式为其中
ρ
{displaystyle rho }
为体电荷密度,
ϵ
0
{displaystyle epsilon _{0}}
为真空电容率。在数学里,高斯定律的微分形式等价于其积分形式。这等价关系可以用散度定理来证明。自由电荷是自由移动,不被束缚于原子或分子内的电荷;而束缚电荷则是束缚于原子或分子内的电荷。当遇到涉及电介质的问题时,才需要考虑到束缚电荷所产生的效应。当电介质被置入于外电场时,电介质内的束缚电荷会被外电场影响,虽然仍旧束缚于其微观区域(原子或分子),但会做微小位移。所有这些微小位移的贡献造成了宏观的电荷分布的改变。虽然微观而言,不论是自由电荷,还是束缚电荷,本质上都是电荷。实际而言,对于某些案例,使用自由电荷的概念可以简化问题的解析。但有时候,由于问题比较复杂,缺乏对称性,必需采用其它方法来解析问题。对于空间内的任意体积
V
{displaystyle mathbb {V} }
,其表面
A
{displaystyle mathbb {A} }
,这个高斯定律表述,可以用积分形式的方程表达为其中,
D
{displaystyle mathbf {D} }
为电位移,
d
a
′
{displaystyle dmathbf {a} '}
为闭合曲面
A
{displaystyle mathbb {A} }
的微分面积,由曲面向外定义为其方向,
Q
f
r
e
e
{displaystyle Q_{mathrm {free} }}
是在体积
V
{displaystyle mathbb {V} }
内的自由电荷数量。只涉及自由电荷,这个高斯定律表述的微分形式可以表达为其中,
ρ
f
r
e
e
{displaystyle rho _{mathrm {free} }}
是自由电荷密度,完全不包括束缚电荷。请注意,在某种状况下,虽然区域内可能没有自由电荷,
ρ
f
r
e
e
=
0
{displaystyle rho _{mathrm {free} }=0}
。但是,这并不表示电位移等于 0 。因为,其中,
P
{displaystyle mathbf {P} }
是电极化强度。取旋度于方程的两边,所以,电位移很可能不等于 0 。最典型的例子是永电体。在数学里,高斯定律的微分形式等价于其积分形式。这等价关系可以用散度定理来证明。等价于高斯定律对于自由电荷的方程请注意,这里只处理微分形式,不处理积分形式。这已达成足够条件。因为,根据散度定理,两种高斯定律的方程,其微分形式都分别等价于积分形式。电势移
D
{displaystyle mathbf {D} }
的定义式为其中,
P
{displaystyle mathbf {P} }
是电极化强度。束缚电荷密度
ρ
b
o
u
n
d
{displaystyle rho _{bound}}
的定义式为(请参阅电极化)注意到
ρ
{displaystyle rho }
是总电荷密度:稍加编排,所以,
∇
⋅
E
=
ρ
/
ε
0
{displaystyle nabla cdot mathbf {E} =rho /varepsilon _{0}}
若且维若
∇
⋅
D
=
ρ
f
r
e
e
{displaystyle nabla cdot mathbf {D} =rho _{free}}
。两个方程等价。线性电介质有一个简单良好的性质,其
D
{displaystyle mathbf {D} }
和
E
{displaystyle mathbf {E} }
的关系方程为其中,
ϵ
{displaystyle epsilon }
是物质的电容率。对于线性电介质,又有一对等价的高斯定律表述:库仑定律阐明,一个固定的点电荷的电场是其中,
q
′
{displaystyle q'}
是点电荷,
r
{displaystyle mathbf {r} }
是电场位置,
r
′
{displaystyle mathbf {r} '}
是点电荷位置。根据这方程,计算位于
r
′
{displaystyle mathbf {r} '}
的无穷小电荷元素所产生的位于
r
{displaystyle mathbf {r} }
的电场,积分体积曲域
V
{displaystyle mathbb {V} }
内所有的无穷小电荷元素,可以得到电荷分布所产生的电场:取这方程两边对于
r
{displaystyle mathbf {r} }
的散度:注意到其中,
δ
(
r
)
{displaystyle delta (mathbf {r} )}
是狄拉克δ函数。所以,
E
(
r
)
{displaystyle mathbf {E} (mathbf {r} )}
的散度是利用狄拉克δ函数的挑选性质,可以得到高斯定律的微分形式:由于库仑定律只能应用于固定不动的电荷,对于移动电荷,这导引不能证明高斯定律成立。事实是,对于移动电荷,高斯定律也成立。所以,从这角度来看,高斯定律比库仑定律更一般化。严格地说,从高斯定律不能数学推导出库仑定律,高斯定律并没有给出任何关于电场的旋度的资料(参阅亥姆霍兹定理和法拉第电磁感应定律)。但是,假若能够添加一个对称性假定,即电荷造成的电场是球对称的(就像库仑定律本身一样,在固定不动电荷的状况,这假设是正确的;在移动电荷的状况,这假设是近乎正确的),那么,就可以从高斯定律推导出库仑定律。高斯定律的方程为设定高斯定律积分的曲面
A
{displaystyle mathbb {A} }
为一个半径
r
{displaystyle r}
圆球面,圆心位置在电荷
Q
{displaystyle Q}
的位置。那么,由于球对称性,
E
=
E
(
r
)
r
^
{displaystyle mathbf {E} =E(r){hat {mathbf {r} }}}
,
E
(
r
)
{displaystyle E(r)}
与
d
a
′
{displaystyle dmathbf {a} '}
无关,可以将
E
(
r
)
{displaystyle E(r)}
从积分内提出:所以,库仑定律成立:
相关
- 复方新诺明扑菌特(Trimethoprim/sulfamethoxazole, TMP/SMX),较为人知的名称是复方新诺明、磺胺剂(co-trimoxazole),是一种用来防治多种因为细菌而引起感染的抗生素,用以治疗各种细菌感
- 解剖学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学解剖学(英语:Anatomy)是涉及生命体的结构
- 恋物癖恋物(Sexual fetishism / Erotic fetishism)是指对无生命物体或性器官以外的身体部位的性固着。在医学上,单纯的恋物并非病态,但若构成了当事人极大的痛苦或对其生活的某些层面
- 失明失明,俗称盲或者瞎,是指由生理或心理原因引发的人体视知觉缺陷。目前对于视觉丧失的程度有多种度量标准,而失明也有许多种定义。完全失明是指人体彻底丧失对于形状和可见光的感
- 氯雷他定氯雷他定(loratadine),中英文商品名:开瑞坦/克敏能/佳力天(Claritin)/乐敏锭(Lomidine),是第二代的抗组织胺药,常用于治疗过敏症状。和第一代抗组织胺药相比,它的一大特性是无明显
- 外子丈夫,是男女婚姻中对男性的称谓,与妻子相对应。古代妻子对自己配偶又称夫婿、夫君、相公、官人,闽南语则称翁婿(闽南语读“ㄤ”(ang /ɑŋ/),字用“翁”)、头家、夫婿。外子则是妻
- 古埃及文字埃及语(圣书体:
- 切削液切削液,是一种特别为机械加工而设的冷却剂和润滑剂。其中包括油、油水乳化液、膏剂、凝胶、气雾、空气或其他气体。他们可能会从石油馏出物、动物脂肪、植物油、水和空气、或
- 2017年世界大学生运动会第二十九届夏季世界大学生运动会(英语:XXIX Summer Universiade,简称2017年台北大运会或台北大运会)于2017年8月19日至8月30日在中华民国台北市举行,为台湾首次举办世界大学生运
- 胺亚甲基谷氨酸胺亚甲基谷氨酸 (英语:Formiminoglutamic acid,简称FIGLU) 是组氨酸代谢的一个中间体。"FIGLU" 测试常被用来检测维生素B12或叶酸缺乏症以及肝病医学导航:遗传代谢缺陷代谢、k,