高斯定律

✍ dations ◷ 2024-11-05 18:55:28 #高斯定律
高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系:此方程是卡尔·高斯在1835年提出的,但直到1867年才发布。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由反平方定律决定的物理量,例如引力或者辐照度。参看散度定理。采用国际单位制,对于空间内的任意体积 V {displaystyle mathbb {V} } ,其表面 A {displaystyle mathbb {A} } ,真空中的高斯定律的积分形式可以用方程表达为其中, E {displaystyle mathbf {E} } 为电场, d a ′ {displaystyle dmathbf {a} '} 为闭合曲面 A {displaystyle mathbb {A} } 的微分面积,由曲面向外定义为其方向, Q {displaystyle Q} 是在体积 V {displaystyle mathbb {V} } 内的总电荷数量。给予空间的某个区域内,任意位置的电场。原则上,应用高斯定律,可以很容易地计算出电荷的分布。只要积分电场于任意区域的表面,再乘以真空电容率,就可以得到那区域内的电荷数量。但是,更常遇到的是逆反问题。给予电荷的分布,求算在某位置的电场。这问题比较难解析。虽然知道穿过某一个闭合曲面的电通量,这资料仍旧不足以解析问题。在闭合曲面任意位置的电场可能会是非常的复杂。假若,问题本身显示出某种对称性,促使在闭合曲面位置的电场大小变得均匀。那么,就可以借着这均匀性来计算电场。像圆柱对称、平面对称、球对称等等,这些空间的对称性,都能帮助高斯定律来解析问题。若想知道怎样利用这些对称性来计算电场,请参阅高斯曲面(Gaussian surface)。高斯定律的方程的微分形式为其中 ρ {displaystyle rho } 为体电荷密度, ϵ 0 {displaystyle epsilon _{0}} 为真空电容率。在数学里,高斯定律的微分形式等价于其积分形式。这等价关系可以用散度定理来证明。自由电荷是自由移动,不被束缚于原子或分子内的电荷;而束缚电荷则是束缚于原子或分子内的电荷。当遇到涉及电介质的问题时,才需要考虑到束缚电荷所产生的效应。当电介质被置入于外电场时,电介质内的束缚电荷会被外电场影响,虽然仍旧束缚于其微观区域(原子或分子),但会做微小位移。所有这些微小位移的贡献造成了宏观的电荷分布的改变。虽然微观而言,不论是自由电荷,还是束缚电荷,本质上都是电荷。实际而言,对于某些案例,使用自由电荷的概念可以简化问题的解析。但有时候,由于问题比较复杂,缺乏对称性,必需采用其它方法来解析问题。对于空间内的任意体积 V {displaystyle mathbb {V} } ,其表面 A {displaystyle mathbb {A} } ,这个高斯定律表述,可以用积分形式的方程表达为其中, D {displaystyle mathbf {D} } 为电位移, d a ′ {displaystyle dmathbf {a} '} 为闭合曲面 A {displaystyle mathbb {A} } 的微分面积,由曲面向外定义为其方向, Q f r e e {displaystyle Q_{mathrm {free} }} 是在体积 V {displaystyle mathbb {V} } 内的自由电荷数量。只涉及自由电荷,这个高斯定律表述的微分形式可以表达为其中, ρ f r e e {displaystyle rho _{mathrm {free} }} 是自由电荷密度,完全不包括束缚电荷。请注意,在某种状况下,虽然区域内可能没有自由电荷, ρ f r e e = 0 {displaystyle rho _{mathrm {free} }=0} 。但是,这并不表示电位移等于 0 。因为,其中, P {displaystyle mathbf {P} } 是电极化强度。取旋度于方程的两边,所以,电位移很可能不等于 0 。最典型的例子是永电体。在数学里,高斯定律的微分形式等价于其积分形式。这等价关系可以用散度定理来证明。等价于高斯定律对于自由电荷的方程请注意,这里只处理微分形式,不处理积分形式。这已达成足够条件。因为,根据散度定理,两种高斯定律的方程,其微分形式都分别等价于积分形式。电势移 D {displaystyle mathbf {D} } 的定义式为其中, P {displaystyle mathbf {P} } 是电极化强度。束缚电荷密度 ρ b o u n d {displaystyle rho _{bound}} 的定义式为(请参阅电极化)注意到 ρ {displaystyle rho } 是总电荷密度:稍加编排,所以, ∇ ⋅ E = ρ / ε 0 {displaystyle nabla cdot mathbf {E} =rho /varepsilon _{0}} 若且维若 ∇ ⋅ D = ρ f r e e {displaystyle nabla cdot mathbf {D} =rho _{free}} 。两个方程等价。线性电介质有一个简单良好的性质,其 D {displaystyle mathbf {D} } 和 E {displaystyle mathbf {E} } 的关系方程为其中, ϵ {displaystyle epsilon } 是物质的电容率。对于线性电介质,又有一对等价的高斯定律表述:库仑定律阐明,一个固定的点电荷的电场是其中, q ′ {displaystyle q'} 是点电荷, r {displaystyle mathbf {r} } 是电场位置, r ′ {displaystyle mathbf {r} '} 是点电荷位置。根据这方程,计算位于 r ′ {displaystyle mathbf {r} '} 的无穷小电荷元素所产生的位于 r {displaystyle mathbf {r} } 的电场,积分体积曲域 V {displaystyle mathbb {V} } 内所有的无穷小电荷元素,可以得到电荷分布所产生的电场:取这方程两边对于 r {displaystyle mathbf {r} } 的散度:注意到其中, δ ( r ) {displaystyle delta (mathbf {r} )} 是狄拉克δ函数。所以, E ( r ) {displaystyle mathbf {E} (mathbf {r} )} 的散度是利用狄拉克δ函数的挑选性质,可以得到高斯定律的微分形式:由于库仑定律只能应用于固定不动的电荷,对于移动电荷,这导引不能证明高斯定律成立。事实是,对于移动电荷,高斯定律也成立。所以,从这角度来看,高斯定律比库仑定律更一般化。严格地说,从高斯定律不能数学推导出库仑定律,高斯定律并没有给出任何关于电场的旋度的资料(参阅亥姆霍兹定理和法拉第电磁感应定律)。但是,假若能够添加一个对称性假定,即电荷造成的电场是球对称的(就像库仑定律本身一样,在固定不动电荷的状况,这假设是正确的;在移动电荷的状况,这假设是近乎正确的),那么,就可以从高斯定律推导出库仑定律。高斯定律的方程为设定高斯定律积分的曲面 A {displaystyle mathbb {A} } 为一个半径 r {displaystyle r} 圆球面,圆心位置在电荷 Q {displaystyle Q} 的位置。那么,由于球对称性, E = E ( r ) r ^ {displaystyle mathbf {E} =E(r){hat {mathbf {r} }}} , E ( r ) {displaystyle E(r)} 与 d a ′ {displaystyle dmathbf {a} '} 无关,可以将 E ( r ) {displaystyle E(r)} 从积分内提出:所以,库仑定律成立:

相关

  • Z-testZ检验,也称“U检验”,是为了检验在零假设情况下测试数据能否可以接近正态分布的一种统计测试。根据中心极限定理,在大样本条件下许多测验可以被贴合为正态分布。在不同的显著性
  • 塔罗糖塔罗糖(Talose)是一种己醛糖。可溶于水,微溶于醇类,存在于某些植物和细菌中,可由葡萄糖或甘露糖经化学反应制备。用于土壤细菌毒性基因的表达控制研究。果聚糖:菊粉 · 果聚糖β
  • 发育异常发育不良(英语:Dysplasia)也称为发育异常,是病理学的词语,是指生物组织发育时的异常,或是上皮部位在分化及发育的问题(上皮发育不良(英语:epithelial dysplasia))。像髋关节发育不全症(
  • 动力学动力学(Dynamics)是经典力学的一门分支,主要研究运动的变化与造成这变化的各种因素。换句话说,动力学研究力对物体之运动所造成的影响。运动学则是纯粹描述物体的运动,完全不考虑
  • 极低频极低频(Extremely Low Frequency,ELF)是指频率由3Hz至30Hz,波长10,000公里至100,000公里的无线电波 。极低频无线电波是闪电和自然扰动在地球磁场中产生的,因此是大气科学中研究
  • 细胞信号传导讯息传递可以指:
  • 低地国家低地国家(荷兰语:de Nederlanden,法语:les Pays-Bas),又译低地诸国(英语:Low Countries),是对欧洲西北沿海地区的称呼,广义包括荷兰、比利时、卢森堡,以及法国北部与德国西部;狭义上则仅
  • 乙基乙基是一个烃基官能团,化学式为—C2H5,简写为—Et(Ethyl)。最简单的乙基化合物为乙烷(C2H6),乙基与氢原子相连。其他包括氯乙烷、溴乙烷、乙醇、乙胺和硝基乙烷等。乙基化指向分子
  • 东日耳曼语支东日耳曼语支是印欧语系日耳曼语族之下一个已经灭绝的语支,唯一已知文字的东日耳曼语支语言是哥德语。其他被认定同是东日耳曼语支的语言有汪达尔语、勃艮第日耳曼语、伦巴底
  • 比腕力掰手腕,或称扳手腕,是一种两人较量力量的一项比赛,也是国际性标准赛事。比赛时,会有主裁判和副裁判,两人使用一张腕力桌,采面对面方式,手以虎口相握握住对方拇指,双方手肘放置肘垫上