姿态

✍ dations ◷ 2025-10-03 22:24:27 #姿态
在三维空间里,直轴(直线)、直轴段、有向轴、有向轴段(向量)的定向是由它们与参考系的参考轴之夹角设定的。也可以用别的方法,例如方向余弦方法。在三维空间里,一个平面的定向是垂直于此平面的一个向量的定向。在三维空间里,刚体的定向涉及整个刚体的定位。假若一个刚体内中一点已被固定,刚体仍旧能够绕着固定点旋转。单独固定点的位置并不能完全地描述刚体的位置。一个刚体的位置有两个部分:平移位置与角位置。平移位置可以用设定于刚体的一个参考点来表示。这参考点时常会是刚体的质心或刚体与地面的接触点。角位置,或定向,通常由刚体的体轴与空间坐标轴的夹角来设定;或者,定义固定于刚体的坐标轴为体坐标轴,由空间坐标轴转动至体坐标轴所需的转动角参数设定。在经典力学里,有几个工具可以用来描述三维空间的刚体转动。有些可以延伸至四维或多维空间。欧拉是最早试图用数学表达定向的科学家。他设想出三个有顺序的参考系,按照先后顺序,可以从前面的参考系绕着转动轴转动到后面的参考系。他发现,从任何一个参考系,经过三种特定的转动,可以转到三维空间内任何参考系。这三种特定转动的角度就是欧拉角。欧拉意识到,两个连续的转动可以合成为一个绕着不同转动轴的转动。所以,前述的三个欧拉角转动等价于一个转动。那时,转动所环绕的转动轴,很不容易计算出来。一直到矩阵理论的发展,才有较容易的方法来计算转动轴。根据这些理论,他新创了一个向量方法来描述任何转动;转动的转动轴与向量同线,向量的量值就是转动角度,称此向量为旋转向量。任何定向可以用一个相对于参考系的旋转向量来表示。随着矩阵理论的发表,欧拉旋转定理被重新改写。每一个转动都可以用正交矩阵来代表,又称为旋转矩阵或方向余弦矩阵。欧拉向量是旋转矩阵的特征向量(一个旋转矩阵必定有唯一的,实值的特征值)。两个旋转矩阵的乘积等于对应的转动的合成。因此,定向可以用从参考系的一个转动所相应的旋转矩阵来表示。在n-维空间里,一个非对称的物体的位形空间是SO(n)× Rn。定向可以用此物体的切向量的基来代表。每一个向量所指的方向决定此物体的定向。定向四元数方法是另外一种描述转动的方法。等价于旋转矩阵方法,定向四元数除去了旋转矩阵里面的重复资料。所以,定向四元数方法比较简实与有效率。导航角的三个角是偏航角,俯仰角,与滚动角。导航角又称为泰特-布莱恩角或卡丹角。在航空工程学里,这些角通常称为欧拉角,很容易造成与数学的欧拉角之间的混淆。在三维空间里,一个刚体的定向会因转动而改变。当转动时,除了包含于转动轴的点以外,刚体内部所有的点都会改变位置。

相关

  • 042–079医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药
  • The New Republic(June 2009)《新共和》杂志(The New Republic,简称TNR),美国左派/自由派杂志,自1914年开始发行至今,以政治与艺术为主题。最早是以周刊形式发行,现在则是双周刊,发行量约为50,000份
  • 间苯二胺间苯二胺(m-Phenylenediamine)是一种有机化合物,分子式C6H4(NH2)2,为苯被两个氨基所取代的化合物,与邻苯二胺与对苯二胺互为同分异构体。它是一种无色固体。间苯二胺可由1,3-二
  • 圣卡尔洛剧院圣卡洛剧院(Teatro di San Carlo)是意大利那不勒斯的一座歌剧院,位于市中心的的里雅斯特与特伦托广场,是欧洲现存最古老的持续使用的歌剧院,被列为世界遗产。剧院得名于波旁王朝
  • 企鹅企鹅属于企鹅目(学名:Sphenisciformes)企鹅科(Spheniscidae),是一种不会飞的鸟类。主要生活在南半球,目前已知全世界的企鹅共有19种,另有两种已灭绝。多数分布在南极地区,而其中环企
  • 奄蔡奄蔡(上古汉语拟音:;英语:Alans,或 Alani,也拼为 Alauni 或 Halani)为古代中亚印欧语系游牧民族,又作阖苏,1—3世纪中叶的 东汉三国时期也称阿兰聊(中古汉语拟音:)或阿兰。他们族源是塞
  • 蜕皮激素蜕皮激素或蜕皮甾类激素、蜕皮类固醇(英语:Ecdysteroids)是节肢动物的甾体激素参与调控蜕皮、发育,以及在较小程度上影响生殖。蜕皮激素包括蜕皮酮、20-羟基蜕皮酮、2-脱氧蜕皮
  • 奇经八脉奇经八脉,中医学概念,指“别道奇行”的经脉,有别于“十二正经”(十二经脉),八脉包括督脉、任脉、冲脉、带脉、阴维脉、阳维脉、阴
  • 齐亚尔王朝齐亚尔王朝(波斯语:زیاریان;英语:Ziyarids)是928年至1043年统治里海沿岸戈尔甘及马赞德兰地区的伊朗王朝。马尔达维季(Mardavij)是王朝的创建者,他从萨曼王朝军队骚乱当中乘
  • 眩晕 (小说)《眩晕》(日语:眩暈,英语:Vertigo)是日本推理作家岛田庄司的推理小说,为其笔下的侦探御手洗洁系列小说。御手洗洁从东大教授古井猛彦处得到了一篇奇怪的手记,手记中记录了作者三崎