首页 >
态叠加原理
✍ dations ◷ 2025-11-29 03:00:57 #态叠加原理
在量子力学里,态叠加原理(superposition principle)表明,假若一个量子系统的量子态可以是几种不同量子态中的任意一种,则它们的归一化线性组合也可以是其量子态。称这线性组合为“叠加态”。假设组成叠加态的几种量子态相互正交,则这量子系统处于其中任意量子态的概率是对应权值的绝对值平方。:316ff从数学表述,态叠加原理是薛定谔方程的解所具有的性质。由于薛定谔方程是个线性方程,任意几个解的线性组合也是解。这些形成线性组合(称为“叠加态”)的解时常会被设定为相互正交(称为“基底态”),例如氢原子的电子能级态;换句话说,这几个基底态彼此之间不会出现重叠。这样,对于叠加态测量任意可观察量所得到的期望值,是对于每一个基底态测量同样可观察量所得到的期望值,乘以叠加态处于对应基底态的概率之后,所有乘积的总和。更具体地说明,假设对于某量子系统测量可观察量
A
{displaystyle A}
,而可观察量
A
{displaystyle A}
的本征态
|
a
1
⟩
{displaystyle |a_{1}rangle }
、
|
a
2
⟩
{displaystyle |a_{2}rangle }
分别拥有本征值
a
1
{displaystyle a_{1}}
、
a
2
{displaystyle a_{2}}
,则根据薛定谔方程的线性关系,叠加态
|
ψ
⟩
=
c
1
|
a
1
⟩
+
c
2
|
a
2
⟩
{displaystyle |psi rangle =c_{1}|a_{1}rangle +c_{2}|a_{2}rangle }
也可以是这量子系统的量子态;其中,
c
1
{displaystyle c_{1}}
、
c
2
{displaystyle c_{2}}
分别为叠加态处于本征态
|
a
1
⟩
{displaystyle |a_{1}rangle }
、
|
a
2
⟩
{displaystyle |a_{2}rangle }
的概率幅。假设对这叠加态系统测量可观察量
A
{displaystyle A}
,则测量获得数值是
a
1
{displaystyle a_{1}}
或
a
2
{displaystyle a_{2}}
的概率分别为
|
c
1
|
2
{displaystyle |c_{1}|^{2}}
、
|
c
2
|
2
{displaystyle |c_{2}|^{2}}
,期望值为
⟨
ψ
|
A
|
ψ
⟩
=
|
c
1
|
2
a
1
+
|
c
2
|
2
a
2
{displaystyle langle psi |A|psi rangle =|c_{1}|^{2}a_{1}+|c_{2}|^{2}a_{2}}
。举一个可直接观察到量子叠加的实例,在双缝实验里,可以观察到通过两条狭缝的光子相互干涉,造成了显示于侦测屏障的明亮条纹和黑暗条纹,这就是双缝实验著名的干涉图样。再举一个案例,在量子运算里,量子位元是的两个基底态
|
0
⟩
{displaystyle |0rangle }
与
|
1
⟩
{displaystyle |1rangle }
的线性叠加。这两个基底态
|
0
⟩
{displaystyle |0rangle }
、
|
1
⟩
{displaystyle |1rangle }
的本征值分别为
0
{displaystyle 0}
、
1
{displaystyle 1}
。在数学里,叠加原理表明,线性方程的任意几个解所组成的线性组合也是这方程的解。由于薛定谔方程是线性方程,叠加原理也适用于量子力学,在量子力学里称为态叠加原理。假设某量子系统的量子态可以是
|
f
1
⟩
{displaystyle |f_{1}rangle }
或
|
f
2
⟩
{displaystyle |f_{2}rangle }
,这些量子态都满足描述这量子系统物理行为的薛定谔方程。则这量子系的量子态也可以是它们的线性组合
|
f
⟩
=
c
1
|
f
1
⟩
+
c
2
|
f
2
⟩
{displaystyle |frangle =c_{1}|f_{1}rangle +c_{2}|f_{2}rangle }
,也满足同样的薛定谔方程;其中,
c
1
{displaystyle c_{1}}
、
c
2
{displaystyle c_{2}}
是复值系数,为了归一化
|
f
⟩
{displaystyle |frangle }
,必须让
|
c
1
|
2
+
|
c
2
|
2
=
1
{displaystyle |c_{1}|^{2}+|c_{2}|^{2}=1}
。假设
θ
{displaystyle theta }
为实数,则虽然
e
i
θ
|
f
2
⟩
{displaystyle e^{itheta }|f_{2}rangle }
与
|
f
2
⟩
{displaystyle |f_{2}rangle }
标记同样的量子态,他们并无法相互替换。例如,
|
f
1
⟩
+
|
f
2
⟩
{displaystyle |f_{1}rangle +|f_{2}rangle }
、
|
f
1
⟩
+
e
i
θ
|
f
2
⟩
{displaystyle |f_{1}rangle +e^{itheta }|f_{2}rangle }
分别标记两种不同的量子态。但是,
|
f
1
⟩
+
|
f
2
⟩
{displaystyle |f_{1}rangle +|f_{2}rangle }
和
e
i
θ
(
|
f
1
⟩
+
|
f
2
⟩
)
{displaystyle e^{itheta }(|f_{1}rangle +|f_{2}rangle )}
都标记同一个量子态。因此可以这样说,整体的相位因子并不具有物理意义,但相对的相位因子具有重要的物理意义。这种相位因子固定不变的量子叠加称为“相干量子叠加”。:317设想自旋为
1
/
2
{displaystyle 1/2}
的电子,它拥有两种相互正交的自旋本征态,上旋态
|
↑
⟩
{displaystyle |uparrow rangle }
与下旋态
|
↓
⟩
{displaystyle |downarrow rangle }
,它们的量子叠加可以用来表示量子位元:其中,
c
↑
{displaystyle c_{uparrow }}
、
c
↓
{displaystyle c_{downarrow }}
分别是复值系数,为了归一化
|
ψ
⟩
{displaystyle |psi rangle }
,必须让
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{displaystyle |c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1}
。这是最一般的量子态。系数
c
↑
{displaystyle c_{uparrow }}
、
c
↓
{displaystyle c_{downarrow }}
分别给定电子处于上旋态或下旋态的概率:总概率应该等于1:
p
=
p
↑
+
p
↓
=
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{displaystyle p=p_{uparrow }+p_{downarrow }=|c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1}
。这电子也可能处于这两个量子态的叠加态:电子处于上旋态或下旋态的概率分别为再次注意到总概率应该等于1:描述一个非相对论性自由粒子的含时薛定谔方程为:331-336其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,
Ψ
(
r
,
t
)
{displaystyle Psi (mathbf {r} ,t)}
是粒子的波函数,
r
{displaystyle mathbf {r} }
是粒子的位置,
t
{displaystyle t}
是时间。这薛定谔方程有一个平面波解:其中,
k
{displaystyle mathbf {k} }
是波矢,
ω
{displaystyle omega }
是角频率。代入薛定谔方程,这两个变数必须遵守关系式由于粒子存在的概率等于1,波函数
Ψ
(
r
,
t
)
{displaystyle Psi (mathbf {r} ,t)}
必须归一化,才能够表达出正确的物理意义。对于一般的自由粒子而言,这不是问题。因为,自由粒子的波函数,在位置或动量方面,都是局部性的。在量子力学里,一个自由粒子的动量与能量不必须拥有特定的值。自由粒子的波函数可以表示为很多平面波的量子叠加:其中,积分区域
K
{displaystyle mathbb {K} }
是
k
{displaystyle mathbf {k} }
-空间。为了方便计算,只思考一维空间,其中,振幅
A
(
k
)
{displaystyle A(k)}
是量子叠加的系数函数。逆反过来,系数函数表示为其中,
Ψ
(
x
,
0
)
{displaystyle Psi (x,0)}
是在时间
t
=
0
{displaystyle t=0}
的波函数。所以,知道在时间
t
=
0
{displaystyle t=0}
的波函数
Ψ
(
x
,
0
)
{displaystyle Psi (x,0)}
,通过傅里叶变换,可以推导出在任何时间的波函数
Ψ
(
x
,
t
)
{displaystyle Psi (x,t)}
。
相关
- 自我哲学自我哲学(英语:philosophy of self)是一个经验主体与所有其他的事物区别的身份条件。当代有关自我本性的探讨与人格本性、个人身份相关的讨论有所不同。“自我”一词有时被认为
- 神经上皮细胞神经上皮细胞是一种干细胞,可行细胞分裂产生两个完全相同的细胞。而后,子细胞会经由不对称的细胞分裂,产生一个与亲代相同的细胞及另一个非干细胞的先驱细胞或神经元。
- 身心医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学身心医学(英语:Psychosomatic medicine),
- 傻朋克傻朋克(英语:Daft Punk)是一个创立于法国巴黎的电子音乐团体,由盖-马努尔·德霍曼-克里斯托和汤玛斯·本高特两位唱片骑师于1992年组成。他们将浩室与流行电音结合,在1990年代晚
- 大智度论《大智度论》(梵语:Mahāprajñāpāramitāśāstra;英语:The Treatise on the Great Perfection of Wisdom),简称《智度论》、《智论》、《大论》,亦称《摩诃般若释论》、《大智
- 法瑞纳斯吉列尔莫·法里尼亚斯·埃尔南德斯(西班牙语:Guillermo Fariñas Hernández,1962年1月3日-),古巴心理医生、独立记者和持不同政见者。他多年来曾进行23次绝食以反抗古巴政权。他
- 德国表现主义德国表现主义(英语:German Expressionism)是指一些互相关联的德国艺术运动,从一战前开始,在1920年代的柏林到达顶峰。这些运动属于北欧与中欧表现主义运动的一部分,涉及的领域包括
- 食品加工业食品加工业是将食物透过物理或化学途径转化为其他形态的食物产业,旨于令食材更易包装及烹饪。典形的食物加工包括切碎、浸渍、液化、乳化、烹调(例如煮、烤、煎、烧)、腌制,甚至
- 呼吸道疾病呼吸系统疾病 (Respiratory Diseases)。 是指局限于呼吸系统的疾病。从生理上分为两类:阻塞性肺病和限制性肺疾病。 从解剖学上可分为: 上呼吸道疾病,下呼吸道疾病,肺间质疾病和
- 授权许可(英语:license)是为避免非法所采取的法律允许行为,亦可以指该允许行为的书面协议。当许可作为名词指称协议时,依然称许可,但实际情况会在其后添加条款或协议等词。许可人可以
