态叠加原理

✍ dations ◷ 2025-08-15 16:03:50 #态叠加原理
在量子力学里,态叠加原理(superposition principle)表明,假若一个量子系统的量子态可以是几种不同量子态中的任意一种,则它们的归一化线性组合也可以是其量子态。称这线性组合为“叠加态”。假设组成叠加态的几种量子态相互正交,则这量子系统处于其中任意量子态的概率是对应权值的绝对值平方。:316ff从数学表述,态叠加原理是薛定谔方程的解所具有的性质。由于薛定谔方程是个线性方程,任意几个解的线性组合也是解。这些形成线性组合(称为“叠加态”)的解时常会被设定为相互正交(称为“基底态”),例如氢原子的电子能级态;换句话说,这几个基底态彼此之间不会出现重叠。这样,对于叠加态测量任意可观察量所得到的期望值,是对于每一个基底态测量同样可观察量所得到的期望值,乘以叠加态处于对应基底态的概率之后,所有乘积的总和。更具体地说明,假设对于某量子系统测量可观察量 A {displaystyle A} ,而可观察量 A {displaystyle A} 的本征态 | a 1 ⟩ {displaystyle |a_{1}rangle } 、 | a 2 ⟩ {displaystyle |a_{2}rangle } 分别拥有本征值 a 1 {displaystyle a_{1}} 、 a 2 {displaystyle a_{2}} ,则根据薛定谔方程的线性关系,叠加态 | ψ ⟩ = c 1 | a 1 ⟩ + c 2 | a 2 ⟩ {displaystyle |psi rangle =c_{1}|a_{1}rangle +c_{2}|a_{2}rangle } 也可以是这量子系统的量子态;其中, c 1 {displaystyle c_{1}} 、 c 2 {displaystyle c_{2}} 分别为叠加态处于本征态 | a 1 ⟩ {displaystyle |a_{1}rangle } 、 | a 2 ⟩ {displaystyle |a_{2}rangle } 的概率幅。假设对这叠加态系统测量可观察量 A {displaystyle A} ,则测量获得数值是 a 1 {displaystyle a_{1}} 或 a 2 {displaystyle a_{2}} 的概率分别为 | c 1 | 2 {displaystyle |c_{1}|^{2}} 、 | c 2 | 2 {displaystyle |c_{2}|^{2}} ,期望值为 ⟨ ψ | A | ψ ⟩ = | c 1 | 2 a 1 + | c 2 | 2 a 2 {displaystyle langle psi |A|psi rangle =|c_{1}|^{2}a_{1}+|c_{2}|^{2}a_{2}} 。举一个可直接观察到量子叠加的实例,在双缝实验里,可以观察到通过两条狭缝的光子相互干涉,造成了显示于侦测屏障的明亮条纹和黑暗条纹,这就是双缝实验著名的干涉图样。再举一个案例,在量子运算里,量子位元是的两个基底态 | 0 ⟩ {displaystyle |0rangle } 与 | 1 ⟩ {displaystyle |1rangle } 的线性叠加。这两个基底态 | 0 ⟩ {displaystyle |0rangle } 、 | 1 ⟩ {displaystyle |1rangle } 的本征值分别为 0 {displaystyle 0} 、 1 {displaystyle 1} 。在数学里,叠加原理表明,线性方程的任意几个解所组成的线性组合也是这方程的解。由于薛定谔方程是线性方程,叠加原理也适用于量子力学,在量子力学里称为态叠加原理。假设某量子系统的量子态可以是 | f 1 ⟩ {displaystyle |f_{1}rangle } 或 | f 2 ⟩ {displaystyle |f_{2}rangle } ,这些量子态都满足描述这量子系统物理行为的薛定谔方程。则这量子系的量子态也可以是它们的线性组合 | f ⟩ = c 1 | f 1 ⟩ + c 2 | f 2 ⟩ {displaystyle |frangle =c_{1}|f_{1}rangle +c_{2}|f_{2}rangle } ,也满足同样的薛定谔方程;其中, c 1 {displaystyle c_{1}} 、 c 2 {displaystyle c_{2}} 是复值系数,为了归一化 | f ⟩ {displaystyle |frangle } ,必须让 | c 1 | 2 + | c 2 | 2 = 1 {displaystyle |c_{1}|^{2}+|c_{2}|^{2}=1} 。假设 θ {displaystyle theta } 为实数,则虽然 e i θ | f 2 ⟩ {displaystyle e^{itheta }|f_{2}rangle } 与 | f 2 ⟩ {displaystyle |f_{2}rangle } 标记同样的量子态,他们并无法相互替换。例如, | f 1 ⟩ + | f 2 ⟩ {displaystyle |f_{1}rangle +|f_{2}rangle } 、 | f 1 ⟩ + e i θ | f 2 ⟩ {displaystyle |f_{1}rangle +e^{itheta }|f_{2}rangle } 分别标记两种不同的量子态。但是, | f 1 ⟩ + | f 2 ⟩ {displaystyle |f_{1}rangle +|f_{2}rangle } 和 e i θ ( | f 1 ⟩ + | f 2 ⟩ ) {displaystyle e^{itheta }(|f_{1}rangle +|f_{2}rangle )} 都标记同一个量子态。因此可以这样说,整体的相位因子并不具有物理意义,但相对的相位因子具有重要的物理意义。这种相位因子固定不变的量子叠加称为“相干量子叠加”。:317设想自旋为 1 / 2 {displaystyle 1/2} 的电子,它拥有两种相互正交的自旋本征态,上旋态 | ↑ ⟩ {displaystyle |uparrow rangle } 与下旋态 | ↓ ⟩ {displaystyle |downarrow rangle } ,它们的量子叠加可以用来表示量子位元:其中, c ↑ {displaystyle c_{uparrow }} 、 c ↓ {displaystyle c_{downarrow }} 分别是复值系数,为了归一化 | ψ ⟩ {displaystyle |psi rangle } ,必须让 | c ↑ | 2 + | c ↓ | 2 = 1 {displaystyle |c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1} 。这是最一般的量子态。系数 c ↑ {displaystyle c_{uparrow }} 、 c ↓ {displaystyle c_{downarrow }} 分别给定电子处于上旋态或下旋态的概率:总概率应该等于1: p = p ↑ + p ↓ = | c ↑ | 2 + | c ↓ | 2 = 1 {displaystyle p=p_{uparrow }+p_{downarrow }=|c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1} 。这电子也可能处于这两个量子态的叠加态:电子处于上旋态或下旋态的概率分别为再次注意到总概率应该等于1:描述一个非相对论性自由粒子的含时薛定谔方程为:331-336其中, ℏ {displaystyle hbar } 是约化普朗克常数, Ψ ( r , t ) {displaystyle Psi (mathbf {r} ,t)} 是粒子的波函数, r {displaystyle mathbf {r} } 是粒子的位置, t {displaystyle t} 是时间。这薛定谔方程有一个平面波解:其中, k {displaystyle mathbf {k} } 是波矢, ω {displaystyle omega } 是角频率。代入薛定谔方程,这两个变数必须遵守关系式由于粒子存在的概率等于1,波函数 Ψ ( r , t ) {displaystyle Psi (mathbf {r} ,t)} 必须归一化,才能够表达出正确的物理意义。对于一般的自由粒子而言,这不是问题。因为,自由粒子的波函数,在位置或动量方面,都是局部性的。在量子力学里,一个自由粒子的动量与能量不必须拥有特定的值。自由粒子的波函数可以表示为很多平面波的量子叠加:其中,积分区域 K {displaystyle mathbb {K} } 是 k {displaystyle mathbf {k} } -空间。为了方便计算,只思考一维空间,其中,振幅 A ( k ) {displaystyle A(k)} 是量子叠加的系数函数。逆反过来,系数函数表示为其中, Ψ ( x , 0 ) {displaystyle Psi (x,0)} 是在时间 t = 0 {displaystyle t=0} 的波函数。所以,知道在时间 t = 0 {displaystyle t=0} 的波函数 Ψ ( x , 0 ) {displaystyle Psi (x,0)} ,通过傅里叶变换,可以推导出在任何时间的波函数 Ψ ( x , t ) {displaystyle Psi (x,t)} 。

相关

  • 空军美国空军(英语:United States Air Force,缩写:USAF)是美国军队中的空军军种。其任务是“通过空中、外太空和网络空间中的武力保护美国及其利益”,它于1947年9月18日正式成立。美国
  • 甲氧苯青霉素甲氧西林(Methicillin)是一种于1960年首次合成的β-内酰胺类半合成抗生素。发现于1960年,主要对金黄色葡萄球菌等革兰氏阳性菌有作用,可用于治疗败血症、呼吸道感染、脑膜炎等由
  • 散瞳症瞳孔放大(英语:Mydriasis),也称瞳孔散大,是指瞳孔变大的情况,和瞳孔缩小(英语:myosis)相对。这个词通常用来指在没有医生干涉的情况下出现的一种症状,但有时也可指代医生出于治疗需要
  • 马来-波利尼西亚语族马来-波利尼西亚语族(Malayo-Polynesian languages)是南岛语系以下的一个分支,使用人口约有3亿8550万。在过去马来-波利尼西亚语系有时候也被当作是南岛语系的同义词。马来-波
  • 语言能力语言能力,又称为语言学能力、语言才能、语言本能,是指一个人所拥有的关于其母语的知识和技能。例如,了解字词都是什么含义,如何将字词组成句子以及字词如何发音等等。Noam Choms
  • 海因里希·奥托·威兰海因里希·奥托·威兰(德语:Heinrich Otto Wieland,1877年6月4日-1957年8月5日)是一位德国化学家,终生致力于面对天然产物的有机化学研究,成功分离出多种毒素与生物碱。因对胆汁酸
  • 邻苯二胺邻苯二胺是一个芳香胺,分子式为C6H4(NH2)2。它是苯二胺的异构体之一,两个氨基处于苯环的邻位(1,2-),其他两个异构体是间苯二胺和对苯二胺。邻苯二胺由邻硝基苯胺的硫化钠还原或催
  • 酯基.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 放牧放牧,又称牧食、啮食,指草食性动物进食植物(例如草)或其他多细胞自营生物(例如藻类)的行为。放牧不同于真正捕食,因为被食用的生物体并未真正死亡。许多小型食草动物会跟随在大型食
  • 同心圆模式同心圆模式(英语:Concentric zone model),又称为伯吉斯模式(Burgess model),是第一个用于解释社会阶层于城市内的分布的模型。此模式于1924年由社会学家欧尼斯特·伯吉斯(英语:Ernest