首页 >
态叠加原理
✍ dations ◷ 2025-01-23 15:10:27 #态叠加原理
在量子力学里,态叠加原理(superposition principle)表明,假若一个量子系统的量子态可以是几种不同量子态中的任意一种,则它们的归一化线性组合也可以是其量子态。称这线性组合为“叠加态”。假设组成叠加态的几种量子态相互正交,则这量子系统处于其中任意量子态的概率是对应权值的绝对值平方。:316ff从数学表述,态叠加原理是薛定谔方程的解所具有的性质。由于薛定谔方程是个线性方程,任意几个解的线性组合也是解。这些形成线性组合(称为“叠加态”)的解时常会被设定为相互正交(称为“基底态”),例如氢原子的电子能级态;换句话说,这几个基底态彼此之间不会出现重叠。这样,对于叠加态测量任意可观察量所得到的期望值,是对于每一个基底态测量同样可观察量所得到的期望值,乘以叠加态处于对应基底态的概率之后,所有乘积的总和。更具体地说明,假设对于某量子系统测量可观察量
A
{displaystyle A}
,而可观察量
A
{displaystyle A}
的本征态
|
a
1
⟩
{displaystyle |a_{1}rangle }
、
|
a
2
⟩
{displaystyle |a_{2}rangle }
分别拥有本征值
a
1
{displaystyle a_{1}}
、
a
2
{displaystyle a_{2}}
,则根据薛定谔方程的线性关系,叠加态
|
ψ
⟩
=
c
1
|
a
1
⟩
+
c
2
|
a
2
⟩
{displaystyle |psi rangle =c_{1}|a_{1}rangle +c_{2}|a_{2}rangle }
也可以是这量子系统的量子态;其中,
c
1
{displaystyle c_{1}}
、
c
2
{displaystyle c_{2}}
分别为叠加态处于本征态
|
a
1
⟩
{displaystyle |a_{1}rangle }
、
|
a
2
⟩
{displaystyle |a_{2}rangle }
的概率幅。假设对这叠加态系统测量可观察量
A
{displaystyle A}
,则测量获得数值是
a
1
{displaystyle a_{1}}
或
a
2
{displaystyle a_{2}}
的概率分别为
|
c
1
|
2
{displaystyle |c_{1}|^{2}}
、
|
c
2
|
2
{displaystyle |c_{2}|^{2}}
,期望值为
⟨
ψ
|
A
|
ψ
⟩
=
|
c
1
|
2
a
1
+
|
c
2
|
2
a
2
{displaystyle langle psi |A|psi rangle =|c_{1}|^{2}a_{1}+|c_{2}|^{2}a_{2}}
。举一个可直接观察到量子叠加的实例,在双缝实验里,可以观察到通过两条狭缝的光子相互干涉,造成了显示于侦测屏障的明亮条纹和黑暗条纹,这就是双缝实验著名的干涉图样。再举一个案例,在量子运算里,量子位元是的两个基底态
|
0
⟩
{displaystyle |0rangle }
与
|
1
⟩
{displaystyle |1rangle }
的线性叠加。这两个基底态
|
0
⟩
{displaystyle |0rangle }
、
|
1
⟩
{displaystyle |1rangle }
的本征值分别为
0
{displaystyle 0}
、
1
{displaystyle 1}
。在数学里,叠加原理表明,线性方程的任意几个解所组成的线性组合也是这方程的解。由于薛定谔方程是线性方程,叠加原理也适用于量子力学,在量子力学里称为态叠加原理。假设某量子系统的量子态可以是
|
f
1
⟩
{displaystyle |f_{1}rangle }
或
|
f
2
⟩
{displaystyle |f_{2}rangle }
,这些量子态都满足描述这量子系统物理行为的薛定谔方程。则这量子系的量子态也可以是它们的线性组合
|
f
⟩
=
c
1
|
f
1
⟩
+
c
2
|
f
2
⟩
{displaystyle |frangle =c_{1}|f_{1}rangle +c_{2}|f_{2}rangle }
,也满足同样的薛定谔方程;其中,
c
1
{displaystyle c_{1}}
、
c
2
{displaystyle c_{2}}
是复值系数,为了归一化
|
f
⟩
{displaystyle |frangle }
,必须让
|
c
1
|
2
+
|
c
2
|
2
=
1
{displaystyle |c_{1}|^{2}+|c_{2}|^{2}=1}
。假设
θ
{displaystyle theta }
为实数,则虽然
e
i
θ
|
f
2
⟩
{displaystyle e^{itheta }|f_{2}rangle }
与
|
f
2
⟩
{displaystyle |f_{2}rangle }
标记同样的量子态,他们并无法相互替换。例如,
|
f
1
⟩
+
|
f
2
⟩
{displaystyle |f_{1}rangle +|f_{2}rangle }
、
|
f
1
⟩
+
e
i
θ
|
f
2
⟩
{displaystyle |f_{1}rangle +e^{itheta }|f_{2}rangle }
分别标记两种不同的量子态。但是,
|
f
1
⟩
+
|
f
2
⟩
{displaystyle |f_{1}rangle +|f_{2}rangle }
和
e
i
θ
(
|
f
1
⟩
+
|
f
2
⟩
)
{displaystyle e^{itheta }(|f_{1}rangle +|f_{2}rangle )}
都标记同一个量子态。因此可以这样说,整体的相位因子并不具有物理意义,但相对的相位因子具有重要的物理意义。这种相位因子固定不变的量子叠加称为“相干量子叠加”。:317设想自旋为
1
/
2
{displaystyle 1/2}
的电子,它拥有两种相互正交的自旋本征态,上旋态
|
↑
⟩
{displaystyle |uparrow rangle }
与下旋态
|
↓
⟩
{displaystyle |downarrow rangle }
,它们的量子叠加可以用来表示量子位元:其中,
c
↑
{displaystyle c_{uparrow }}
、
c
↓
{displaystyle c_{downarrow }}
分别是复值系数,为了归一化
|
ψ
⟩
{displaystyle |psi rangle }
,必须让
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{displaystyle |c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1}
。这是最一般的量子态。系数
c
↑
{displaystyle c_{uparrow }}
、
c
↓
{displaystyle c_{downarrow }}
分别给定电子处于上旋态或下旋态的概率:总概率应该等于1:
p
=
p
↑
+
p
↓
=
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{displaystyle p=p_{uparrow }+p_{downarrow }=|c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1}
。这电子也可能处于这两个量子态的叠加态:电子处于上旋态或下旋态的概率分别为再次注意到总概率应该等于1:描述一个非相对论性自由粒子的含时薛定谔方程为:331-336其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,
Ψ
(
r
,
t
)
{displaystyle Psi (mathbf {r} ,t)}
是粒子的波函数,
r
{displaystyle mathbf {r} }
是粒子的位置,
t
{displaystyle t}
是时间。这薛定谔方程有一个平面波解:其中,
k
{displaystyle mathbf {k} }
是波矢,
ω
{displaystyle omega }
是角频率。代入薛定谔方程,这两个变数必须遵守关系式由于粒子存在的概率等于1,波函数
Ψ
(
r
,
t
)
{displaystyle Psi (mathbf {r} ,t)}
必须归一化,才能够表达出正确的物理意义。对于一般的自由粒子而言,这不是问题。因为,自由粒子的波函数,在位置或动量方面,都是局部性的。在量子力学里,一个自由粒子的动量与能量不必须拥有特定的值。自由粒子的波函数可以表示为很多平面波的量子叠加:其中,积分区域
K
{displaystyle mathbb {K} }
是
k
{displaystyle mathbf {k} }
-空间。为了方便计算,只思考一维空间,其中,振幅
A
(
k
)
{displaystyle A(k)}
是量子叠加的系数函数。逆反过来,系数函数表示为其中,
Ψ
(
x
,
0
)
{displaystyle Psi (x,0)}
是在时间
t
=
0
{displaystyle t=0}
的波函数。所以,知道在时间
t
=
0
{displaystyle t=0}
的波函数
Ψ
(
x
,
0
)
{displaystyle Psi (x,0)}
,通过傅里叶变换,可以推导出在任何时间的波函数
Ψ
(
x
,
t
)
{displaystyle Psi (x,t)}
。
相关
- 精神药物精神药物(英语:psychoactive drug),又称精神药品(psychopharmaceutical,或psychotropic)。有些精神药品具有医疗和科学价值。一种化学物质的概称,这些物质能够穿越血脑屏障,直接作用
- 食品科学食品科学是一门把科学知识用于食品加工和生产的跨学科的应用科学。 食品科学内容包括食品化学、食品微生物学、食品加工和食品工程等学科。食品科学关心的是: 食物、营养卫
- 量子计算机量子计算机(英语:Quantum computer)是一种使用量子逻辑进行通用计算的设备。不同于电子计算机(或称传统计算机),量子计算用来存储数据的对象是量子比特,它使用量子算法来进行数据操
- 碘酊碘酊又称碘酒,是一种常用的消毒液。 碘酊通常由2%-7%的碘单质与碘化钾或碘化钠溶于酒精和水的混合溶液组成,最早在1908年由安东尼奥·格鲁斯奇用于手术前皮肤消毒。与卢戈氏碘
- Cmsub2/subOsub3/subCurium sesquioxide三氧化二锔是一种无机化合物,化学式为Cm2O3。锔能形成两种氧化物:三氧化二锔和二氧化锔(CmO2),其中前者更为常见。锔的氧化物都是固体,不溶于水但溶于无机酸。
- 前脑叶白质切除术脑白质切除术(lobotomy)是一种神经外科手术,包括切除前额叶皮质的连接组织。脑白质切除术主要于1930年代到1950年代用来医治一些精神病,这也是世界上第一种精神外科手术。该技术
- 玛格丽特二世玛格丽特二世(丹麦语:Hendes Majestæt Dronning Margrethe II,全名为玛格丽特·亞歴山德琳·托希尔杜尔·英格丽德(Margrethe Alexandrine Þórhildur Ingrid),1940年4月16日-)是
- ɾ̥清齿龈闪音是一种罕见的辅音,国际音标(IPA)记作⟨ɾ̥⟩,由齿龈闪音加上代表清音的修饰符所组成。X-SAMPA音标则写作4_0。据称在一些语言出现的清齿龈闪擦音可以理解为非常短暂
- ShockwaveAdobe Shockwave(前为Macromedia Shockwave)是一个基于网页浏览器的多媒体平台,用于交互式应用程序和视频游戏。它是Macromedia在Flash之前最成功的多媒体播放器。它能将Adobe
- 史丹利·米勒斯坦利·劳埃德·米勒(英语:Stanley Lloyd Miller,1930年3月7日-2007年5月20日)是一位美国化学家和生物学家,以生命起源的无生源论研究而闻名,尤其是以证明有机化合物可从简单的无