首页 >
态叠加原理
✍ dations ◷ 2025-11-26 04:03:20 #态叠加原理
在量子力学里,态叠加原理(superposition principle)表明,假若一个量子系统的量子态可以是几种不同量子态中的任意一种,则它们的归一化线性组合也可以是其量子态。称这线性组合为“叠加态”。假设组成叠加态的几种量子态相互正交,则这量子系统处于其中任意量子态的概率是对应权值的绝对值平方。:316ff从数学表述,态叠加原理是薛定谔方程的解所具有的性质。由于薛定谔方程是个线性方程,任意几个解的线性组合也是解。这些形成线性组合(称为“叠加态”)的解时常会被设定为相互正交(称为“基底态”),例如氢原子的电子能级态;换句话说,这几个基底态彼此之间不会出现重叠。这样,对于叠加态测量任意可观察量所得到的期望值,是对于每一个基底态测量同样可观察量所得到的期望值,乘以叠加态处于对应基底态的概率之后,所有乘积的总和。更具体地说明,假设对于某量子系统测量可观察量
A
{displaystyle A}
,而可观察量
A
{displaystyle A}
的本征态
|
a
1
⟩
{displaystyle |a_{1}rangle }
、
|
a
2
⟩
{displaystyle |a_{2}rangle }
分别拥有本征值
a
1
{displaystyle a_{1}}
、
a
2
{displaystyle a_{2}}
,则根据薛定谔方程的线性关系,叠加态
|
ψ
⟩
=
c
1
|
a
1
⟩
+
c
2
|
a
2
⟩
{displaystyle |psi rangle =c_{1}|a_{1}rangle +c_{2}|a_{2}rangle }
也可以是这量子系统的量子态;其中,
c
1
{displaystyle c_{1}}
、
c
2
{displaystyle c_{2}}
分别为叠加态处于本征态
|
a
1
⟩
{displaystyle |a_{1}rangle }
、
|
a
2
⟩
{displaystyle |a_{2}rangle }
的概率幅。假设对这叠加态系统测量可观察量
A
{displaystyle A}
,则测量获得数值是
a
1
{displaystyle a_{1}}
或
a
2
{displaystyle a_{2}}
的概率分别为
|
c
1
|
2
{displaystyle |c_{1}|^{2}}
、
|
c
2
|
2
{displaystyle |c_{2}|^{2}}
,期望值为
⟨
ψ
|
A
|
ψ
⟩
=
|
c
1
|
2
a
1
+
|
c
2
|
2
a
2
{displaystyle langle psi |A|psi rangle =|c_{1}|^{2}a_{1}+|c_{2}|^{2}a_{2}}
。举一个可直接观察到量子叠加的实例,在双缝实验里,可以观察到通过两条狭缝的光子相互干涉,造成了显示于侦测屏障的明亮条纹和黑暗条纹,这就是双缝实验著名的干涉图样。再举一个案例,在量子运算里,量子位元是的两个基底态
|
0
⟩
{displaystyle |0rangle }
与
|
1
⟩
{displaystyle |1rangle }
的线性叠加。这两个基底态
|
0
⟩
{displaystyle |0rangle }
、
|
1
⟩
{displaystyle |1rangle }
的本征值分别为
0
{displaystyle 0}
、
1
{displaystyle 1}
。在数学里,叠加原理表明,线性方程的任意几个解所组成的线性组合也是这方程的解。由于薛定谔方程是线性方程,叠加原理也适用于量子力学,在量子力学里称为态叠加原理。假设某量子系统的量子态可以是
|
f
1
⟩
{displaystyle |f_{1}rangle }
或
|
f
2
⟩
{displaystyle |f_{2}rangle }
,这些量子态都满足描述这量子系统物理行为的薛定谔方程。则这量子系的量子态也可以是它们的线性组合
|
f
⟩
=
c
1
|
f
1
⟩
+
c
2
|
f
2
⟩
{displaystyle |frangle =c_{1}|f_{1}rangle +c_{2}|f_{2}rangle }
,也满足同样的薛定谔方程;其中,
c
1
{displaystyle c_{1}}
、
c
2
{displaystyle c_{2}}
是复值系数,为了归一化
|
f
⟩
{displaystyle |frangle }
,必须让
|
c
1
|
2
+
|
c
2
|
2
=
1
{displaystyle |c_{1}|^{2}+|c_{2}|^{2}=1}
。假设
θ
{displaystyle theta }
为实数,则虽然
e
i
θ
|
f
2
⟩
{displaystyle e^{itheta }|f_{2}rangle }
与
|
f
2
⟩
{displaystyle |f_{2}rangle }
标记同样的量子态,他们并无法相互替换。例如,
|
f
1
⟩
+
|
f
2
⟩
{displaystyle |f_{1}rangle +|f_{2}rangle }
、
|
f
1
⟩
+
e
i
θ
|
f
2
⟩
{displaystyle |f_{1}rangle +e^{itheta }|f_{2}rangle }
分别标记两种不同的量子态。但是,
|
f
1
⟩
+
|
f
2
⟩
{displaystyle |f_{1}rangle +|f_{2}rangle }
和
e
i
θ
(
|
f
1
⟩
+
|
f
2
⟩
)
{displaystyle e^{itheta }(|f_{1}rangle +|f_{2}rangle )}
都标记同一个量子态。因此可以这样说,整体的相位因子并不具有物理意义,但相对的相位因子具有重要的物理意义。这种相位因子固定不变的量子叠加称为“相干量子叠加”。:317设想自旋为
1
/
2
{displaystyle 1/2}
的电子,它拥有两种相互正交的自旋本征态,上旋态
|
↑
⟩
{displaystyle |uparrow rangle }
与下旋态
|
↓
⟩
{displaystyle |downarrow rangle }
,它们的量子叠加可以用来表示量子位元:其中,
c
↑
{displaystyle c_{uparrow }}
、
c
↓
{displaystyle c_{downarrow }}
分别是复值系数,为了归一化
|
ψ
⟩
{displaystyle |psi rangle }
,必须让
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{displaystyle |c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1}
。这是最一般的量子态。系数
c
↑
{displaystyle c_{uparrow }}
、
c
↓
{displaystyle c_{downarrow }}
分别给定电子处于上旋态或下旋态的概率:总概率应该等于1:
p
=
p
↑
+
p
↓
=
|
c
↑
|
2
+
|
c
↓
|
2
=
1
{displaystyle p=p_{uparrow }+p_{downarrow }=|c_{uparrow }|^{2}+|c_{downarrow }|^{2}=1}
。这电子也可能处于这两个量子态的叠加态:电子处于上旋态或下旋态的概率分别为再次注意到总概率应该等于1:描述一个非相对论性自由粒子的含时薛定谔方程为:331-336其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,
Ψ
(
r
,
t
)
{displaystyle Psi (mathbf {r} ,t)}
是粒子的波函数,
r
{displaystyle mathbf {r} }
是粒子的位置,
t
{displaystyle t}
是时间。这薛定谔方程有一个平面波解:其中,
k
{displaystyle mathbf {k} }
是波矢,
ω
{displaystyle omega }
是角频率。代入薛定谔方程,这两个变数必须遵守关系式由于粒子存在的概率等于1,波函数
Ψ
(
r
,
t
)
{displaystyle Psi (mathbf {r} ,t)}
必须归一化,才能够表达出正确的物理意义。对于一般的自由粒子而言,这不是问题。因为,自由粒子的波函数,在位置或动量方面,都是局部性的。在量子力学里,一个自由粒子的动量与能量不必须拥有特定的值。自由粒子的波函数可以表示为很多平面波的量子叠加:其中,积分区域
K
{displaystyle mathbb {K} }
是
k
{displaystyle mathbf {k} }
-空间。为了方便计算,只思考一维空间,其中,振幅
A
(
k
)
{displaystyle A(k)}
是量子叠加的系数函数。逆反过来,系数函数表示为其中,
Ψ
(
x
,
0
)
{displaystyle Psi (x,0)}
是在时间
t
=
0
{displaystyle t=0}
的波函数。所以,知道在时间
t
=
0
{displaystyle t=0}
的波函数
Ψ
(
x
,
0
)
{displaystyle Psi (x,0)}
,通过傅里叶变换,可以推导出在任何时间的波函数
Ψ
(
x
,
t
)
{displaystyle Psi (x,t)}
。
相关
- 拟菌病毒科拟菌病毒科(学名:Mimiviridae)是核质巨DNA病毒的一个科,成员均为巨大病毒,包含拟菌病毒、Klosneuvirus(英语:Klosneuvirus)、Cafeteriavirus(英语:Cafeteriavirus)、图邦病毒等,可能还包
- 顾客顾客或客户可以指用金钱或某种有价值的物品来换取接受财产、服务、产品或某种创意的自然人或公司 。是商业服务或产品的采购者,他们可能是最终的消费者、代理人或供应链内的
- 人工耳蜗人工耳蜗,亦称为“人工电子耳”,是一种植入式听觉辅助设备,其功能是使重度失聪的病人(聋人)产生一定的声音知觉。与助听器等其它类型的听觉辅助设备不同,人工耳蜗的工作原理不是放
- 台南左镇化石园区台南左镇化石园区位于台湾台南市左镇区,前身为菜寮化石馆。1971年时在左镇菜寮溪畔发现台湾的第一块人类化石,故以地名与化石为此馆命名。以往,菜寮溪流域经常在大雨过后,河流溪
- 蓝起司蓝乳酪(Blue cheese)又称蓝纹干酪、蓝芝士、蓝起司,是干酪的一种,特点是以青霉菌发酵而成,使其表面有一些蓝色的斑纹。蓝干酪可以用牛奶或羊奶制成。较著名的蓝干酪种类包括法
- 急性细菌性前列腺炎急性细菌性前列腺炎(Acute Prostatitis)是由非特异性细菌引起的前列腺组织的急性炎症称之为急性细菌性前列腺炎。它是前列腺炎中的罕见类型。急性细菌性前列腺炎发病急,高热,尿
- 巢巢是动物居住的地方,通常以地洞、树洞、泥土、岩石或建筑物之掩蔽为巢;或以有机物质如小树枝、草、叶和唾液构成,随人类物质利用产生的材料也在利用的范围之内,如绳线、塑胶、布
- 范德瓦耳斯方程范德华方程(van der Waals equation)(一译范德瓦耳斯方程),简称范氏方程,是荷兰物理学家范德华于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点
- 高知特高知特(英语:Cognizant Technology Solutions Corp),是一家管理咨询、信息技术及业务流程外包服务供应商。总部位于新泽西州的提内克。是纳斯达克100指数和标准普尔500指数的成
- 能源安全法国电力近9成来自核能和水力,进口交通被切断时能源安全较高能源安全是一国家安全名词,为能源所带来的潜在一切危害国家利益问题探讨。最常见能源安全问题是能源缺乏,尤其是无
