数学中,施莱夫利符号(Schläfli symbol)是一个可以表示一特定正多胞形或密铺图案若干重要特性的符号。其命名是为了纪念19世纪数学家路德维希·施莱夫利在几何和其他领域的许多重要贡献。
另见正多胞形列表。
一个有个边的正多边形,其施莱夫利符号为/},表示此一星形多边形有个角,每一个角都和次的角相连。因此和不互质时,此时的正星形多边形即称为正星芒形(star figure)。若跟的最大公因数为,此一正星芒形即是由个,},其中p代表每个面的边数,而q代表顶点图的边数,即每个顶点连接多少条棱。此外,还有三个二维空间欧氏正堆砌(honeycomb),它们的施莱夫利符号如下:
高维空间多胞形的施莱夫利符号可以通过类比得出,一个n维正多胞形的施莱夫利符号包含n-1个数字。
四维正多胞体的施莱夫利符号记做{p,q,r},其中{p}为二维面,{p,q}为胞,{q,r}为顶点图,{r}为棱图。四维凸正多胞体共有6种,另有一个三维空间欧氏正堆砌(honeycomb),它们的施莱夫利符号如下:
在五维及以上空间中只存在三种凸正多胞形,并且五维及以上空间只有一种欧氏正堆砌,其中单纯形(正n+1胞体)的施莱夫利符号为{3,3,3,...,3,3,3}(共n-1个3),超方形(正2n胞体)的施莱夫利符号为{4,3,3,...,3,3,3}(共n-2个3),正轴形(正2n胞体)的施莱夫利符号为{3,3,3,...,3,3,4}(共n-2个3),超立方体堆砌的施莱夫利符号为: {4,3,3,...,3,3,4}(中间共n-3个3)。此外,存在三个四维空间欧氏正堆砌,分别是正八胞体堆砌:{4,3,3,4},正十六胞体堆砌:{3,3,4,3}和正二十四胞体堆砌:{3,4,3,3}。