无限群

✍ dations ◷ 2025-05-19 06:03:49 #群论,无限群论

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在群论中,无限群 是潜在集合含有无穷多个元素的群。

相关

  • Canadian Space Agency加拿大航天局(英语:Canadian Space Agency,CSA,法语:Agence spatiale canadienne,ASC)该组织是由加拿大工业部管理,成立于1989年,总部在魁北克省蒙特利尔。组织的目标是成为开发和利
  • 德国酸菜德国酸菜(德文:Sauerkraut;/ˈsaʊərkraʊt/;德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","
  • 尤金·罗荷纳特尤金·罗荷纳特(荷兰语:Eugene Rhuggenaath;1970年2月4日-),是库拉索政治人物、安的列斯重组党(英语:Party for the Restructured Antilles)党魁。他曾在科伊曼内阁(英语:List of cabin
  • 广汕高速动车组列车广汕高速动车组列车是中华人民共和国中国铁路高速所运营的一条客运路线,往来广州南站及潮汕站或汕头站。2013年12月28日随杭深铁路厦深段启用而正式开行。现由广州局集团广九
  • 四维力四维力(英语:four-force)是古典力学中的力物理量在相对论中对应的四维版本。设有一不变质量为的粒子( > 0),其四维动量 P {\d
  • 阿卜杜勒·伊卜尼·哈利姆 (印度尼西亚)阿卜杜勒·伊卜尼·哈利姆(印度尼西亚语旧拼写法:Abdoel Halim,新拼写法:Abdul Halim)(1911年12月27日-1987年7月4日)一般简称哈利姆,是已故印度尼西亚医生、政治人物,是印尼共和国第4
  • 刘孚京刘孚京(?年-?年),字镐仲,江西省建昌府南丰县(今江西南丰县)人。清末官员、诗人、进士出身。光绪十二年(1886年)丙戌科二甲进士;同年五月,俱著主事分部学习,授官刑部主事。改饶平县知县。刘
  • 善焘宗室善焘(满语:ᡠᡴᠰᡠᠨ ᡧᠠᠨᡨᠣᠣ,穆麟德:,太清:,1817年10月9日-1861年2月14日,嘉庆二十二年八月二十九日子时-咸丰十一年正月初五日酉时),原名图山,字溥泉。清朝远支宗室镶白旗第
  • 企业号航天飞机企业号航天飞机(Space Shuttle Enterprise,NASA内部编号OV-101),又译为进取号,是NASA打造的第一架航天飞机。“企业号航天飞机”实际上只是一个的航天的测试平台,没有引擎等相关部
  • 神经元 (期刊)《神经元》(英语:)是由爱思唯尔旗下细胞出版社出版的双周同行评审的科学期刊,于1988年出版,涵盖神经科学和相关的生物学过程。现任总编辑是Mariela Zirlinger,Katja Brose曾任总编