首页 >
摆线
✍ dations ◷ 2025-06-07 21:46:01 #摆线
在数学中,摆线(Cycloid)被定义为,一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹。它是一般旋轮线的一种。摆线亦称圆滚线。摆线也是最速降线问题和等时降落问题的解。摆线的研究最初开始于库萨的尼古拉,之后马兰·梅森也有针对摆线的研究。1599年伽利略为摆线命名。1634年吉勒斯·德·罗贝瓦勒(英语:Gilles de Roberval)指出摆线下方的面积是生成它的圆面积的三倍。1658年克里斯多佛·雷恩也向人们指出摆线的长度是生成它的圆直径的四倍。在这一时期,伴随着许多发现,也出现了众多有关发现权的争议,甚至抹杀他人工作的现象,而因此摆线也被人们称作“几何学中的海伦”(The Helen of Geometers)。.过原点半径为r的摆线参数方程为在这里实参数t是在弧度制下,圆滚动的角度。对每一个给出的t,圆心的坐标为(rt, r)。
通过替换解出t可以求的笛卡尔坐标方程为摆线的第一道拱由参数t在(0, 2π)区间内的点组成。摆线也满足下面的微分方程。一条由半径为r的圆所生成的拱形面积可以由下面的参数方程界定:微分,于是可以求得弧形的长度可以由下面的式子计算出:一些曲线同摆线紧密相关。当我们弱化定点只能固定在圆边界上时,我们得到了短摆线(curtate cycloid)和长摆线(prolate cycloid),两者合称为次摆线(trochoid),前面的情形是定点在圆的内部,后者则是在圆外。次摆线则是上述三种曲线的统称。更进一步,如果我们让圆也沿着一个圆滚动而不是直线的话,我们会得到外摆线(epicycloid,沿着圆的外部运动,定点在圆的边缘),内摆线(hypocycloid,沿着圆内部滚动,定点在圆的边缘)以及外旋轮线(epitrochoid)和内旋轮线(hypotrochoid,定点可以在圆内的任一点包括边界。)在建筑物的设计方面,摆线曾被路易·卡恩用来设计德克萨斯州沃思堡的建筑金贝尔艺术博物馆(英语:Kimbell Art Museum)。
它也曾被用于设计新罕布什尔州汉诺威的霍普金斯中心。
相关
- 扁桃体扁桃腺,又称扁桃体,是人和两栖类以上动物,鼻后孔的顶壁或咽与口腔、鼻腔交界处粘膜下淋巴组织所集成的团块的通称,因为外形像扁桃一样而得名。一般所说的扁桃腺是指肉眼可见的颚
- 行距在字体排印学,行距(Leading)指代字体连续行的基线间的距离。这个词起源于手工排版的年代,铅字之间通过插入铅块来增加垂直距离。这个术语仍然被应用于如 QuarkXPress(英语:QuarkXP
- 灰树花蕈伞平版状灰树花(学名:Grifola frondosa),又名舞菇、贝叶多孔菌、云蕈、栗子蘑、栗蘑、千佛菌、莲花菌、甜瓜板、奇果菌、叶奇果菌,日本《今昔物语集》中记载野生灰树花有轻微毒
- 阳明山国家公园阳明山国家公园是中华民国设置的第三个国家公园,由内政部营建署管辖,前身为台湾日治时期成立之大屯国立公园(1937-1945)。位于台北都会区近郊,行政区域 包括台北市北投区、士林区
- 最终宿主宿主(英语:Host),也称为寄主,是指为寄生物包括寄生虫、病毒等提供生存环境的生物。最终宿主(primary host或definitive host)是指寄生物的成虫赖以寄生的物种。这类宿主通常为寄生
- 约翰·梅杰约翰·梅杰爵士,KG,CH (英语:Sir John Major,1943年3月29日-)是一名英国政治家,于1990年至1997年出任英国首相和英国保守党党魁。他曾于1987年至1990年间在玛格利特·撒切尔内阁相继
- 设立圣餐日濯足节(拉丁语:Dies Cenae Domini、天主教旧称“建定圣体瞻礼”,意大利语:Giovedì Santo、意思是“神圣星期四”)为复活节前的星期四,乃基督教(广义)纪念耶稣基督最后的晚餐,设立了
- C3前镇之星站前镇之星站位于高雄市前镇区,为高雄捷运环状轻轨的车站。可站外转乘高雄捷运红线凯旋站。车站代码为C3。站区位于凯旋四路与中山三、四路口。预计兴建完成初期每日可达1.6万
- 曼多撒手抄本门多萨手抄本(西班牙语:Códice Mendoza)是阿兹特克手抄本(英语:Aztec codices)之一,约作于1541年前后,共72页。此抄本以征服阿兹特克后的首任新西班牙总督安东尼奥·德·门多萨(英语
- 理查·莱亚德理查·莱亚德(Richard Layard)是英国顶尖的经济学家,在九十年代末曾担任英国首相布莱尔的顾问。他相信一个社会的快乐不必然与其收入相等,而他所研究的“快乐经济学”(Happiness: