首页 >
整数分拆
✍ dations ◷ 2025-04-03 17:17:36 #整数分拆
一个正整数可以写成一些正整数的和。在数论上,跟这些和式有关的问题称为整数拆分、整数剖分、整数分割、分割数或切割数(英语:Integer partition)。其中最常见的问题就是给定正整数
n
{displaystyle n}
,求不同数组
(
a
1
,
a
2
,
.
.
.
,
a
k
)
{displaystyle (a_{1},a_{2},...,a_{k})}
的数目,符合下面的条件:分割函数p(n)是求符合以上第一、二个条件的数组数目。4可以用5种方法写成和式:4, 3+1, 2+2, 2+1+1, 1+1+1+1。因此
p
(
4
)
=
5
{displaystyle p(4)=5}
。定义
p
(
0
)
=
1
{displaystyle p(0)=1}
,若n为负数则
p
(
n
)
=
0
{displaystyle p(n)=0}
。此函数应用于对称多项式及对称群的表示理论等。分割函数p(n),n从0开始:每种分割方法都可用Ferrers图示表示。Ferrers图示是将第1行放
a
1
{displaystyle a_{1}}
个方格,第2行放
a
2
{displaystyle a_{2}}
个方格……第
k
{displaystyle k}
行放
a
k
{displaystyle a_{k}}
个方格,来表示整数分割的其中一个方法。借助Ferrers图示,可以推导出许多恒等式:证明:将表示前者其中一个数组的Ferrers图示沿对角线反射,便得到后者的一个数组。即两者一一对应,因此其数目相同。例如 k=3,n=6:此外,例如
n
=
8
{displaystyle n=8}
:p
(
n
)
{displaystyle p(n)}
的生成函数是当|x|<1,右边可写成:p
(
n
)
{displaystyle p(n)}
生成函数的倒数为欧拉函数,利用五边形数定理可得到以下的展开式:将
p
(
n
)
{displaystyle p(n)}
生成函数配合五边形数定理,可以得到以下的递归关系式其中
q
i
{displaystyle q_{i}}
是第
i
{displaystyle i}
个广义五边形数。一个杨氏矩阵与一个整数分拆一一对应,也就是说整数分拆的个数等于相应的杨氏矩阵的个数。如图表示一个10=5+4+1的分拆。利用杨氏矩阵来表示的
分拆更具有直观性,和可处理性,下面是几个例子。整数分拆(10=5+4+1)对应的杨氏矩阵沿x=y轴翻转得到新的杨氏矩阵。它对应分拆为10=3+2+2+2+1。渐近式:这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。1937年,Hans Rademacher得出一个更佳的结果:其中(
m
,
n
)
=
1
{displaystyle (m,n)=1}
表示
m
,
n
{displaystyle m,n}
互质时才计算那项。
s
(
m
,
k
)
{displaystyle s(m,k)}
表示戴德金和。这条公式的证明用上了和戴德金η函数、福特圆(英语:Ford circle)、法里数列、模群(英语:Modular group)。在将
n
{displaystyle n}
表示成正整数之和的所有和式之中,任意正整数
r
{displaystyle r}
作为和项出现在这些式子内的次数,跟每条和式中出现
r
{displaystyle r}
次或以上的正整数数目,相同。当
r
=
1
{displaystyle r=1}
时,此定理又称为Stanley定理。以
n
=
5
{displaystyle n=5}
为例:以下叙述带有附加条件的分拆。考虑满足下面条件分拆及分拆的每个数都不相等。生成函数是考虑满足下面条件分拆生成函数是差分拆的个数与奇分拆的个数是一样多的。可以通过杨表证明。当限定将
n
{displaystyle n}
表示成刚好
k
{displaystyle k}
个正整数之和时,可以表示为
p
k
(
n
)
{displaystyle p_{k}(n)}
。显然,
p
(
n
)
=
∑
k
=
1
n
p
k
(
n
)
{displaystyle p(n)=sum _{k=1}^{n}p_{k}(n)}
。不少数学家亦有研究按以下方式分拆的方法数目:
相关
- 胚胎学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学胚胎学(英语:Embryology)是研究活着的有
- 克拉斯诺达尔边疆区克拉斯诺达尔边疆区(俄语:Краснода́рский край,罗马化:Krasnodarskiy kray),位于前高加索西部、大高加索北麓,亚速海—黑海东岸,与克里米亚隔刻赤海峡相望。南面
- 三明市三明市(闽中语三明话:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gentium
- 司陶特世涛啤酒(英语:Stout),又称烈性啤酒、烈性黑啤酒,一种深色的啤酒,由烘焙过的麦芽或是大麦、啤酒花、水及酵母所制成。它源自于波特啤酒(Porter),酒精含量约7%至8%,口味较强烈。世涛源
- UKTVUKTV成立于1992年,是一家数字有线和卫星电视网络,由英国广播公司商业分支(BBC Worldwide)和维珍传媒(Virgin Media)合资成立。UKTV目前拥有超过十个子频道,是英国最大的电视公司之
- 贝蒂·福特伊丽莎白·安·布卢默·沃伦·福特(Elizabeth Ann Bloomer Warren Ford,1918年4月18日-2011年7月8日),美国第38任总统杰拉尔德·福特的妻子,美国前第一夫人(1974年-1977年)。以推动女
- 陀罗尼陀罗尼(梵语天城文:धारणी,dhāraṇī),意译为“真言”、“总持”、“持明”、“咒语”、“密语”。主要以梵文字母及句子构成。佛教用语,源自古印度语,汉译后经常出现于佛教经
- 达朗贝尔让·勒朗·达朗贝尔(法语:Jean le Rond d'Alembert,又译达冷柏;1717年11月16日-1783年10月29日),法国物理学家、数学家和天文学家。他一生在很多领域进行研究,在数学、力学、天文学
- 乙胺乙胺是两个碳的胺类。无色气体,具类似氨的强烈气味,几乎与所有溶剂混溶,具胺特征性的弱碱性。在化工和有机合成有广泛应用。大规模制备方法有两种,一是用乙醇和氨在氧化物催化下
- 适居恒星表适居恒星表(HabCat,Catalog of Nearby Habitable Systems)是想像中有适居行星的恒星系统表。这份星表是由两位科学家,玛格丽特·杜布尔与吉儿·塔特在搜寻地外文明计划的子计划-