首页 >
整数分拆
✍ dations ◷ 2025-04-06 10:38:43 #整数分拆
一个正整数可以写成一些正整数的和。在数论上,跟这些和式有关的问题称为整数拆分、整数剖分、整数分割、分割数或切割数(英语:Integer partition)。其中最常见的问题就是给定正整数
n
{displaystyle n}
,求不同数组
(
a
1
,
a
2
,
.
.
.
,
a
k
)
{displaystyle (a_{1},a_{2},...,a_{k})}
的数目,符合下面的条件:分割函数p(n)是求符合以上第一、二个条件的数组数目。4可以用5种方法写成和式:4, 3+1, 2+2, 2+1+1, 1+1+1+1。因此
p
(
4
)
=
5
{displaystyle p(4)=5}
。定义
p
(
0
)
=
1
{displaystyle p(0)=1}
,若n为负数则
p
(
n
)
=
0
{displaystyle p(n)=0}
。此函数应用于对称多项式及对称群的表示理论等。分割函数p(n),n从0开始:每种分割方法都可用Ferrers图示表示。Ferrers图示是将第1行放
a
1
{displaystyle a_{1}}
个方格,第2行放
a
2
{displaystyle a_{2}}
个方格……第
k
{displaystyle k}
行放
a
k
{displaystyle a_{k}}
个方格,来表示整数分割的其中一个方法。借助Ferrers图示,可以推导出许多恒等式:证明:将表示前者其中一个数组的Ferrers图示沿对角线反射,便得到后者的一个数组。即两者一一对应,因此其数目相同。例如 k=3,n=6:此外,例如
n
=
8
{displaystyle n=8}
:p
(
n
)
{displaystyle p(n)}
的生成函数是当|x|<1,右边可写成:p
(
n
)
{displaystyle p(n)}
生成函数的倒数为欧拉函数,利用五边形数定理可得到以下的展开式:将
p
(
n
)
{displaystyle p(n)}
生成函数配合五边形数定理,可以得到以下的递归关系式其中
q
i
{displaystyle q_{i}}
是第
i
{displaystyle i}
个广义五边形数。一个杨氏矩阵与一个整数分拆一一对应,也就是说整数分拆的个数等于相应的杨氏矩阵的个数。如图表示一个10=5+4+1的分拆。利用杨氏矩阵来表示的
分拆更具有直观性,和可处理性,下面是几个例子。整数分拆(10=5+4+1)对应的杨氏矩阵沿x=y轴翻转得到新的杨氏矩阵。它对应分拆为10=3+2+2+2+1。渐近式:这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。1937年,Hans Rademacher得出一个更佳的结果:其中(
m
,
n
)
=
1
{displaystyle (m,n)=1}
表示
m
,
n
{displaystyle m,n}
互质时才计算那项。
s
(
m
,
k
)
{displaystyle s(m,k)}
表示戴德金和。这条公式的证明用上了和戴德金η函数、福特圆(英语:Ford circle)、法里数列、模群(英语:Modular group)。在将
n
{displaystyle n}
表示成正整数之和的所有和式之中,任意正整数
r
{displaystyle r}
作为和项出现在这些式子内的次数,跟每条和式中出现
r
{displaystyle r}
次或以上的正整数数目,相同。当
r
=
1
{displaystyle r=1}
时,此定理又称为Stanley定理。以
n
=
5
{displaystyle n=5}
为例:以下叙述带有附加条件的分拆。考虑满足下面条件分拆及分拆的每个数都不相等。生成函数是考虑满足下面条件分拆生成函数是差分拆的个数与奇分拆的个数是一样多的。可以通过杨表证明。当限定将
n
{displaystyle n}
表示成刚好
k
{displaystyle k}
个正整数之和时,可以表示为
p
k
(
n
)
{displaystyle p_{k}(n)}
。显然,
p
(
n
)
=
∑
k
=
1
n
p
k
(
n
)
{displaystyle p(n)=sum _{k=1}^{n}p_{k}(n)}
。不少数学家亦有研究按以下方式分拆的方法数目:
相关
- 无性繁殖无性生殖是指生物体不以透过生殖细胞的结合方式,也就是不经由减数分裂来产生配子,直接由母体细胞分裂后产生出新个体的生殖方式。主要分为孢子繁殖(英语:Sporogenesis)、分裂生殖
- DNA微阵列DNA微阵列(DNA microarray)又称DNA阵列或DNA芯片,比较常用的名字是基因芯片(gene chip)。是一块带有DNA微阵列(microarray)的特殊玻璃片或硅芯片片,在数平方公分之面积上布放数千或
- 肥力土壤肥力(英语:Soil fertility)是指土壤支持农作物生长的能力,即:为农作物提供生长的土地,并使得土地资源可持续使用,产出高质量的作物。土壤肥力高的土地需要具有以下两个特征:
- 血脑障壁脑血管障壁(英语:blood–brain barrier ,BBB),也称为血脑屏障或血脑障壁,指在血管和脑之间有一种选择性地阻止某些物质由血液进入大脑的“屏障”。19世纪末,保罗·埃尔利希在一个实
- 铂系元素铂系元素是指元素周期表中位于第5及第6周期的8族、9族及10族元素,位在3个铁系元素的下方,包括第5周期的钌、铑、钯和第6周期的锇、铱、铂。铂系元素电子壳层的最外层都只有0到
- 小行星73079小行星73079(73079 Davidbaltimore)是一颗绕太阳运转的小行星,为主小行星带小行星。该小行星于2002年4月14日发现。小行星73079的轨道半长轴为2.3275630 UA,离心率为0.184。
- 停用词在信息检索中,为节省存储空间和提高搜索效率,在自然语言处理数据(或文本)之前或之后会自动过滤掉某些字或词,这些字或词即被称为Stop Words(停用词)。不要把停用词与安全口令混淆
- 王希季王希季(1921年7月26日-),男,白族,云南昆明人,中国卫星和卫星返回技术专家,中国科学院院士,“两弹一星”功勋奖章获得者。祖籍云南大理上末,出生于昆明,白族。1942年,国立西南联合大学机
- 气压表气压表或称气压计(英语、德语: Barometer)是用来测量气压的仪器,在气象学中被广泛使用。气压表有多种造型和原理。因此它是压力表的一类。气压记是由气压表发展出来的仪器,气压
- 科里奥利力科里奥利力(英语:Coriolis Force;简称科氏力)是一种惯性力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。此现象由法国著名数学家兼