整数分拆

✍ dations ◷ 2025-08-13 00:34:13 #整数分拆
一个正整数可以写成一些正整数的和。在数论上,跟这些和式有关的问题称为整数拆分、整数剖分、整数分割、分割数或切割数(英语:Integer partition)。其中最常见的问题就是给定正整数 n {displaystyle n} ,求不同数组 ( a 1 , a 2 , . . . , a k ) {displaystyle (a_{1},a_{2},...,a_{k})} 的数目,符合下面的条件:分割函数p(n)是求符合以上第一、二个条件的数组数目。4可以用5种方法写成和式:4, 3+1, 2+2, 2+1+1, 1+1+1+1。因此 p ( 4 ) = 5 {displaystyle p(4)=5} 。定义 p ( 0 ) = 1 {displaystyle p(0)=1} ,若n为负数则 p ( n ) = 0 {displaystyle p(n)=0} 。此函数应用于对称多项式及对称群的表示理论等。分割函数p(n),n从0开始:每种分割方法都可用Ferrers图示表示。Ferrers图示是将第1行放 a 1 {displaystyle a_{1}} 个方格,第2行放 a 2 {displaystyle a_{2}} 个方格……第 k {displaystyle k} 行放 a k {displaystyle a_{k}} 个方格,来表示整数分割的其中一个方法。借助Ferrers图示,可以推导出许多恒等式:证明:将表示前者其中一个数组的Ferrers图示沿对角线反射,便得到后者的一个数组。即两者一一对应,因此其数目相同。例如 k=3,n=6:此外,例如 n = 8 {displaystyle n=8} :p ( n ) {displaystyle p(n)} 的生成函数是当|x|<1,右边可写成:p ( n ) {displaystyle p(n)} 生成函数的倒数为欧拉函数,利用五边形数定理可得到以下的展开式:将 p ( n ) {displaystyle p(n)} 生成函数配合五边形数定理,可以得到以下的递归关系式其中 q i {displaystyle q_{i}} 是第 i {displaystyle i} 个广义五边形数。一个杨氏矩阵与一个整数分拆一一对应,也就是说整数分拆的个数等于相应的杨氏矩阵的个数。如图表示一个10=5+4+1的分拆。利用杨氏矩阵来表示的 分拆更具有直观性,和可处理性,下面是几个例子。整数分拆(10=5+4+1)对应的杨氏矩阵沿x=y轴翻转得到新的杨氏矩阵。它对应分拆为10=3+2+2+2+1。渐近式:这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。1937年,Hans Rademacher得出一个更佳的结果:其中( m , n ) = 1 {displaystyle (m,n)=1} 表示 m , n {displaystyle m,n} 互质时才计算那项。 s ( m , k ) {displaystyle s(m,k)} 表示戴德金和。这条公式的证明用上了和戴德金η函数、福特圆(英语:Ford circle)、法里数列、模群(英语:Modular group)。在将 n {displaystyle n} 表示成正整数之和的所有和式之中,任意正整数 r {displaystyle r} 作为和项出现在这些式子内的次数,跟每条和式中出现 r {displaystyle r} 次或以上的正整数数目,相同。当 r = 1 {displaystyle r=1} 时,此定理又称为Stanley定理。以 n = 5 {displaystyle n=5} 为例:以下叙述带有附加条件的分拆。考虑满足下面条件分拆及分拆的每个数都不相等。生成函数是考虑满足下面条件分拆生成函数是差分拆的个数与奇分拆的个数是一样多的。可以通过杨表证明。当限定将 n {displaystyle n} 表示成刚好 k {displaystyle k} 个正整数之和时,可以表示为 p k ( n ) {displaystyle p_{k}(n)} 。显然, p ( n ) = ∑ k = 1 n p k ( n ) {displaystyle p(n)=sum _{k=1}^{n}p_{k}(n)} 。不少数学家亦有研究按以下方式分拆的方法数目:

相关

  • W4f14 5d4 6s22, 8, 18, 32, 12, 2蒸气压第一:770 kJ·mol−1 第二:1700 kJ·mol主条目:钨的同位素钨(IUPAC名:tungsten ),化学符号:W(德语:Wolfram ),是化学元素,原子序数是74,是非常硬
  • 廊开府廊开府(泰语:จังหวัดหนองคาย,皇家转写:Changwat Nong Khai,泰语发音:)为泰国东北部之一个府。该府原名为“曼派村”,原属老挝的“万象城”统治。拉达那哥欣王国时代,该
  • 拉特兰宫拉特朗宫(意大利语:Palazzo Laterano)位于意大利罗马市区东南方的拉特朗圣若望广场,毗邻罗马的主教座堂拉特朗圣若望大殿,自4世纪以后的一千年中一直是教宗的主要驻地。目前开设
  • 药锭片剂或锭剂(英语:Tablet)系指药物与辅料混合均匀后经制粒或不经制粒压制成的片状或异型片状制剂可供内服和外用,是目前临床应用最广泛的剂型之一。片剂由药物和辅料二部分组成,辅
  • 恩斯特·比尤特勒恩斯特·比尤特勒(德语:Ernest Beutler,1928年9月30日-2008年10月5日),出生于德国柏林的美国病理学家与血液学家,也是教科书《威廉斯血液学》(Williams Hematology)作者。比尤特勒在1
  • 硫酸雌酮硫酸雌酮(英语:Estrone sulfate,缩写E1S或称为雌酮-3-硫酸,estrone 3-sulfate)是一种天然内源性甾体物质,属于雌激素酯和雌激素缀合物(英语:estrogen conjugate)。除了天然荷尔蒙之外
  • 斯蒂芬·杰·古尔德史蒂芬·杰伊·古尔德(英语:Stephen Jay Gould,1941年9月10日-2002年5月20日)是一名美国古生物学家、演化生物学家,科学史学家与科普作家,职业生涯中大多在哈佛大学担任教职,并曾在
  • 勘查地球化学勘查地球化学是地球化学在应用方面的一门分支学科。可分为狭义和广义两种勘查地球化学。狭义勘查地球化学指系统研究地球化学探矿的理论、方法与技术的学科,也可称为探矿地球
  • 消耗战消耗战是一种军事战略,交战国会以人力与物资使另一方的军事力量达到崩溃,进而赢得战争。此战略常伴随着巨大的伤亡与损失,并往往是物资量较多者得胜,第一次世界大战的西线战场是
  • 选举法选举法是为了选举所制定的法律,各国的选举制度并不同。选举法包括: