整数分拆

✍ dations ◷ 2024-11-06 07:21:46 #整数分拆
一个正整数可以写成一些正整数的和。在数论上,跟这些和式有关的问题称为整数拆分、整数剖分、整数分割、分割数或切割数(英语:Integer partition)。其中最常见的问题就是给定正整数 n {displaystyle n} ,求不同数组 ( a 1 , a 2 , . . . , a k ) {displaystyle (a_{1},a_{2},...,a_{k})} 的数目,符合下面的条件:分割函数p(n)是求符合以上第一、二个条件的数组数目。4可以用5种方法写成和式:4, 3+1, 2+2, 2+1+1, 1+1+1+1。因此 p ( 4 ) = 5 {displaystyle p(4)=5} 。定义 p ( 0 ) = 1 {displaystyle p(0)=1} ,若n为负数则 p ( n ) = 0 {displaystyle p(n)=0} 。此函数应用于对称多项式及对称群的表示理论等。分割函数p(n),n从0开始:每种分割方法都可用Ferrers图示表示。Ferrers图示是将第1行放 a 1 {displaystyle a_{1}} 个方格,第2行放 a 2 {displaystyle a_{2}} 个方格……第 k {displaystyle k} 行放 a k {displaystyle a_{k}} 个方格,来表示整数分割的其中一个方法。借助Ferrers图示,可以推导出许多恒等式:证明:将表示前者其中一个数组的Ferrers图示沿对角线反射,便得到后者的一个数组。即两者一一对应,因此其数目相同。例如 k=3,n=6:此外,例如 n = 8 {displaystyle n=8} :p ( n ) {displaystyle p(n)} 的生成函数是当|x|<1,右边可写成:p ( n ) {displaystyle p(n)} 生成函数的倒数为欧拉函数,利用五边形数定理可得到以下的展开式:将 p ( n ) {displaystyle p(n)} 生成函数配合五边形数定理,可以得到以下的递归关系式其中 q i {displaystyle q_{i}} 是第 i {displaystyle i} 个广义五边形数。一个杨氏矩阵与一个整数分拆一一对应,也就是说整数分拆的个数等于相应的杨氏矩阵的个数。如图表示一个10=5+4+1的分拆。利用杨氏矩阵来表示的 分拆更具有直观性,和可处理性,下面是几个例子。整数分拆(10=5+4+1)对应的杨氏矩阵沿x=y轴翻转得到新的杨氏矩阵。它对应分拆为10=3+2+2+2+1。渐近式:这式子是1918年哈代和拉马努金,以及1920年J. V. Uspensky独立发现的。1937年,Hans Rademacher得出一个更佳的结果:其中( m , n ) = 1 {displaystyle (m,n)=1} 表示 m , n {displaystyle m,n} 互质时才计算那项。 s ( m , k ) {displaystyle s(m,k)} 表示戴德金和。这条公式的证明用上了和戴德金η函数、福特圆(英语:Ford circle)、法里数列、模群(英语:Modular group)。在将 n {displaystyle n} 表示成正整数之和的所有和式之中,任意正整数 r {displaystyle r} 作为和项出现在这些式子内的次数,跟每条和式中出现 r {displaystyle r} 次或以上的正整数数目,相同。当 r = 1 {displaystyle r=1} 时,此定理又称为Stanley定理。以 n = 5 {displaystyle n=5} 为例:以下叙述带有附加条件的分拆。考虑满足下面条件分拆及分拆的每个数都不相等。生成函数是考虑满足下面条件分拆生成函数是差分拆的个数与奇分拆的个数是一样多的。可以通过杨表证明。当限定将 n {displaystyle n} 表示成刚好 k {displaystyle k} 个正整数之和时,可以表示为 p k ( n ) {displaystyle p_{k}(n)} 。显然, p ( n ) = ∑ k = 1 n p k ( n ) {displaystyle p(n)=sum _{k=1}^{n}p_{k}(n)} 。不少数学家亦有研究按以下方式分拆的方法数目:

相关

  • β胡萝卜素胡萝卜素(英语:carotene)是指若干种相关的不饱和烃,分子式为C40H56,由植物合成,但动物不能制造。胡萝卜素是橘色的光合色素。对于人眼视觉,各种胡萝卜都是有颜色的。胡萝卜素使许多
  • 青蒿素联合疗法抗疟药(antimalarial drug)是指用来预防或者治疗疟疾的药物。代表药物有奎宁、氯喹、青蒿素等。抗疟药如进一步按功用细分,尚可分为控制疟疾症状的抗疟药、防止疟疾复发的抗疟
  • 衰变链核科学里,衰变链指的是放射性衰变过程中成链产生的一系列衰变产物。大部分放射性元素并不直接衰变成稳定的状态,而是经过一连串的衰变反应,最终达至稳定的同位素为止。衰变阶段
  • MediasetMediaset是意大利的一家电视公司,总部位于米兰。Mediaset创建于1978年。Mediaset是意大利最大的电视网之一,曾由意大利前总理贝鲁斯科尼所有。
  • 长江br /文明长江文明是长江流域各区域文明的总称,是汉文化的一部分,与黄河文明并列为汉文化的两大源泉。长江文明区域之广、文化遗址数量之多、密度之大,都堪称世界之最,包括有江苏和上海大
  • 郑建华郑建华(1956年9月-),生于吉林长春,原籍浙江宁波,中国信息分析专家,解放军保密委员会技术安全研究所研究员。1987年毕业于中国科学技术大学研究生院。2011年当选为中国科学院院士。
  • 帕里斯帕里斯(古希腊语:Πάρις),原名亚历山大(Ἀλέξανδρος),为荷马史诗《伊利亚特》中的特洛伊王子。在所有现中,最著名的可能是与斯巴达女王海伦的私奔,这是特洛伊战争的直
  • 行政院客家委员会客家委员会(简称客委会)为中华民国有关客家族群事务的最高主管机关,成立于2001年6月,其目标是复兴台湾日渐流失的客家文化,延续客家传统文化命脉,并打造台湾成为一个尊重多元族群
  • 二氯二氟甲烷二氟二氯甲烷(R-12),商品名氟利昂-12,分子式CF2Cl2,是一种氯氟烃无色气体,常作为冷媒或气溶胶推喷剂(英语:Aerosol spray)使用。无色几乎无臭的气体,高浓度时有类似醚的气味且有麻醉性
  • 刘邦友血案刘邦友血案发生于1996年11月21日早晨,桃园县县长官邸的一起震惊台湾社会的枪击杀人案件,造成八死一重伤,其中包括桃园县长刘邦友本人。刘邦友也因而成为台湾地方自治史上第一位